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1 Executive Summary

In recent years, a lot of work has been done in the area of artificial
intelligence and quadcopter drone development. Neural networks and Al training
has piqued a lot of interest from researchers due to its near limitless applications
in human lives. A primary goal is to make the machines people deal with every
day more accessible by facilitating a natural method of communication between
humans and computers. This technology can be linked to autonomous drone
technology. The idea of an unmanned drone began in the latter half of the 20th
century. Drones have developed greatly over the past several decades. Today
the aerial robots find many uses in areas like environmental scanning, recreation,
and military operations. The group wishes to combine these two impressive
technologies together into an object detection drone that is able to use object
detection and deep learning to direct a quadcopter drone through an
environment.

The need for this type of drone can be specified by many different
disciplines such as military use, where weapons or enemies can be detected
while providing the low-visibility, covert components of a drone. Recently, drone
research is looking at package delivery operations for quick online orders and
first response. For example, if someone near you is having a cardiac arrest, the
idea is that you can call an emergency and the emergency will send a drone with
a cardiac arrest machine for you to try to resuscitate while the first response is on
the way. These more commercial and civilian operations are currently not
legalized as there are many air restrictions due to airport zones. Having these
capabilities can greatly decrease time needed to manually use electronics to find
objects, which in the end increases productivity and efficiency via automation.
While also increasing accuracy.

If more time were given to the project, the drone could expand its
capabilities from simple object detection to full autonomous navigation. Our
drone has the capabilities to fly and detect safe landing zones and objects that
are seen as obstacles, as pre-determined by machine learning software. Our
drone has the standard design of a quadcopter and the focal point of this project
is the machine learning software for its possible future vision navigation. Optical
design is also a major focus as this is how the drone is communicating with the
machine learning software to determine placement and what are obstacles.
Machine learning is a fairly new concept within the last decade and has quickly
become popular. Machine learning is the basis of artificial intelligence. Atrtificial
intelligence is developed with a neural network mapping within the machine
learning code. This neural network allows for the machine’s code to learn
according to categories that we will feed the machine via its optical design.

Using many different components, the drone is constructed to meet the
engineering specifications and constraints provided within this document and
shall follow the rubric of what is expected for the Senior Design showcase. The
audience for this project is the advisors and the volunteer judges that are
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evaluating what is presented within both the demonstration as well as the
presentation during the showcase. It should be recognized by the professors that
our project was faculty sponsored but due to a family emergency, this faculty is
no longer with us. We will no longer have the mentor guidance that the team was
hoping for and will try our best to execute the highly advanced software
algorithms and robot building to provide a proper demonstration.

Prior to the presentation, the finalized drone shall be tested within a safe
area to ensure full functionality and to ensure proper training via software. Given
that this project utilizes many engineering disciplines such as computer,
electrical, and photonics, the focus of study within the group is very well suited to
the task of completing this project. There is a strong learning curve that comes
with the process of both design and implementation, but the goal of the Senior
Design course is to provide a real-world application to what can be expected in
the Engineering field.

The following sections in this document detail the team’s planning,
design, and decision making process of the creation of this device. Notable
sections include a detailed description of the components used, while also
providing a comparison via decision matrices, a general overview of the testing
environment that is used to ensure functionality, and also a specific plan that is
followed to meet the group’s goals by notable deadlines. It is important to note
again that the main focus of our project is artificial intelligence, machine learning
and neural networks. The drone is a standard quadcopter drone and there is no
innovation in the actual build of the drone. It was also important to mention that
our prior faculty sponsor stated that if our hand built drone does not fly, we may
purchase a fully functional drone to implement the machine learning.

The team will do its best to build the drone from a drone kit as quickly and
efficiently as possible, as much time is needed to train the drone with machine
learning and artificial intelligence. The drone’s software must be fed algorithms
and images for at least one to two months prior to seeing any advancement
within its machine learning. Therefore, our group's main focal point is training the
machine to navigate with vision. Training is held with a lab given to us by the
head of the electrical and computer engineering department at the university. The
team will safely set up a training zone (explained in more detail below) to safely
train the drone with the machine learning algorithms. The team will also seek
mentorship and guidance from current machine learning and artificial intelligence
professors at the university as this is a new concept and the students on the
team will need guidance for strong execution.

Our team goes into great detail of the software and hardware components,
prior research and current technologies below. This document has helped us
determine what is feasible and what will not be feasible given the time
constraints. Please continue to read and provide feedback on specifications
where seen necessary. This document is crucial to successfully implementing
both the hardware and software components of the drone, as well as tracking the
process all the way to the showcase.
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2 Project Description

2.1 Purpose

The purpose of this project is to build a lightweight manually controlled
drone that can interpret software commands, translate them into instructions that
the system can carry out to maneuver around a specified area while using a
sensor system to detect obstacles and safe landing zones, unmanned. The
drone will navigate by visual navigation and without a radio frequency controller
or a person controlling the drone. The drone will determine which objects within
the area to fly around, fly to, as well as rotate, change altitude, and safely land at
ground level at a predetermined landing zone. These decisions are made by the
implemented machine learning software and made possible through an artificial
neural network.

The purpose of the team is to train the flying machine on its surroundings,
object obstacles, and safe landing zones. Safe landing zones are marked with a
black X on a white background. The obstacles that are introduced to the drone
are stabilized balloons. Figure 2.1 shows a brief example of how the drone will
recognize and analyze its environment, and Figure 2.2 demonstrates the user is
able to directly interact with the drone. Our paper will dig deeper into the different
machine learning algorithms that can be used and compare them effectively to
determine which would be best for the mechanical and electrical components
that the machine is built with.

The software will give the drone specific directional commands, and the
drone will carry them out, occasionally asking for feedback whenever it runs into
an issue. The system will facilitate a steady interaction between the software and
the machine. The group will need to construct their own drone, and integrate the
LIDAR and imaging systems directly with the artificial intelligence (Al) they
develop. Several algorithms and machine learning software will either be open
source or provided by university mentors (professors, phd students, etc.). The
machine learning capabilities must be high to perform the algorithms we wish it to
perform, therefore the hardware components of the quadcopter should be of high
efficiency and dependability to be able to perform such a high intelligent level
task, un-manned.

As the drone becomes constructed, different training methods are
introduced in order to interpret machine learning commands and establish
objects and its specific locations using a sensing operator. This document will
describe the goals, deadlines, methods, and part selection that is crucial for the
success of the project as a whole. The sponsor was to provide basic essentials
such as parts needed in which the group shall decide which components are
most suitable for not only the drone but for all other components. Now the
electrical and computer engineering department will provide funding, guidance
and support for our project.
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Object-Aware (OA) Module: walk through the first doorway out the three - the one all the way to the left , walk straight through
the doorway directly across from in , in front of the mirror . turn right , and stop before the long carpet .

Action-Aware (AA) Module: [W@lK through the first doorway out the three - the one all the way to the left , walk straight through
the doorway directly across from in , in front of the mirror . turn right , and stop before the long carpet .

Envdrop: WalkiifeughlieNirsideonvay out the three - the one all the way to the left , walk straight through the doorway directly
across from in , in front of the mirror . turn right , and stop before the long carpet .

Target Action: 5 OA Module Prediction: 5 AA Module Prediction: 1  Final Prediction: 5 Envdrop Prediction: 4

Figure 2.1: Example of logic for processing instructions from "Object-and-action
aware model for visual navigation.
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Figure 2.2: An example of a navigation system. A person can give instructions
and the drone will ask questions to machine learning software for further
guidance if necessary.
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2.2 Motivation

We have shown interest in this project as a group because of the growing
field of machine learning. Machine learning has been shown as an impressive
and efficient way to train Al to complete tasks of varying difficulties. Due to the
complexities of directly coding object detection into a computer software
program, it is not a very efficient process, and it often requires more time and
effort than one gets out of it. The group has learned that machine learning
algorithms can be used to, “train,” a program to do a certain objective. Through
many trials, a program can more or less, “code itself,” using different connections
and methods to reach a goal, like identifying a piece of furniture or vocal pattern.
For every iteration, the machine learning software may have many different
programs at once and test them for accuracy. The program that is the, “best,”
according to the inputs one gives it is saved. The software then uses this best
program, adapts it, and develops even more connections. Eventually, the
program is able to do the specific task it was assigned very well. The group saw
this project as a great opportunity that would challenge us to learn new skills and
collaborate with a diverse group to attain a satisfactory response from the
sponsor.

The group had to choose a mode of transportation for the system. The
sponsor gave this group a choice between a car and a quadcopter drone. A
sample of what the final product of a car might do is shown in Figure 2.3. This
includes a full scanned map of the environment. A drone would not have such a
detailed map and would need to navigate around fewer objects. Despite the
drone being more complicated to construct and there being the possibility of
more government regulations being a hindrance, the group chose to make the
quadcopter. It should be noted that a drone requires far more time for building,
testing, and adjusting than a car would, leaving the group less time to use the
drone to train the Al for navigation. Since the time is only limited to two
semesters, the sponsor recommended that the navigation requirements were
reduced. Instead of having to navigate an entire room or hallway with a large
number of potential objects and obstacles to identify, the group could instead
focus on navigation around several specific objects that they choose.

The sponsor also has provided more resources for the drone navigation
as opposed to the car. Algorithms for the drone movement are to be provided, as
some experimentation for the drone training has already been completed by
researchers under the sponsor’s watch. These readily available resources are a
great asset moving forward in our own experimentation and research into how
we are producing our product. We believe this to be a big reason for choosing
the drone over the car.

2.3 Basic Goals

The bare minimum for the project to be considered “completed” includes
several specific goals. The primary goal of this robot is to navigate an
environment through natural vocal instructions. According to the sponsor, the Al
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must be able to recognize at least three predetermined objects placed in random
spots, and move the drone around them according to human instructions. This is
done using the Al that was developed to recognize human voice and associate it
with specific objects and actions.

The drone must be able to hover in a single position in calm weather and
move in several directions without human intervention (a handheld controller,
strings, or other external control mechanism). The group should add mechanisms
like an altimeter, gyroscope, and propeller thrust controls in conjunction with the
sensing systems to ensure it can remain stable.

The group should create an object detection system that can determine if
the drone is getting too close to an object. It should be at least able to accurately
detect a white block 1 meter away in daylight. It should then send a signal to the
drone’s computer and advise it to stop moving. This will prevent damage to the
drone and the objects around it. Such a system is done by creating a circuit with
an infrared LED (or laser diode) and an infrared photodiode. Incoming light will
create a potential across the sensor, and after passing through an amplifier, it is
tested against a certain threshold at which a warning signal is sent.

2.4 Advanced Goals

A goal that would greatly increase the quality of our project would be to
produce high-level algorithms in regards to training the drone. An efficient
training method will most-likely be produced in Pytorch and applied in a
simulation to speed up training by magnitudes greater than what would be
achievable through live-testing.

The drone has a series of time of flight sensors around the drone that can
determine exactly how far away a nearby object is. Several of these detectors
should be set up in at least four places around the drone to determine if any parts
of the drone are coming close to hitting an object or person. The closer the drone
measures the objects to be, the more the drone can prioritize the warning signal.
These sensors should give precise distance readings by creating a circuit that
can accurately measure the phase difference between the transmitted and
reflected wave. From this information, the exact distance away can be
determined.

2.5 Stretch Goals

In an ideal scenario, the drone would be able to analyze an environment,
interpret oral inputs, and navigate to its final destination through all of the
obstacles in under 20 seconds. Such speed may negatively affect the drone’s
ability to stay up. By making the code of the drone efficient enough with fast
enough processors it could be possible.

Another advanced goal would be to have a sophisticated LIiDAR detection
system that can create a two dimensional map of the between 1 and 2 meters
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around the drone. It could also be used to create a full two dimensional map of
the testing environment before carrying out instructions, possibly speeding up the
completion time. This could be achieved by advancing the indirect time of flight
sensor technology mentioned previously into a rotatable subsystem that
continuously collects data about nearby objects in all directions.

Finally, the last stretch goal is to obtain autonomous flight. This will be
tested via Python scripts and simulations to show functionality. The drone will
operate the same regardless of navigation method, but a more advanced method
would be preferred.

2.6 Related works

Within military use, drones are known for keeping our country safe, acting

as undetectable eyes. Machine learning on drones have been mainly used in
governmental operations for war use. For example, in 2011 when the United
States was at war with Pakistan and in search for Osama bin Laden, war drones
played a key role in finding him. The main role of unmanned aerial vehicles in
war is to act as a nearly undetectable eye in the sky, which can circle any
targeted area for hours on end. In addition to the video and infrared cameras,
radar and communication devices, warfare drones will also carry weapons but
are mainly used for target and visual guidance. Drones in war are forensic
intelligence machines, where they are used by intelligence units to record video
and data over days or weeks to present to officials who can trace the
whereabouts of known or suspected terrorists.

Recently, drones are now being used in government, not only in war but
also by the police force. Visual navigation drone technology is currently being
studied to track highway speeders, to keep civilian surveillance and to track down
criminals on the most wanted list. Policemen are being trained on how to use
these drones for everyday use. These uses include, search and rescue disaster
response missions, crowd monitoring, traffic collision reconstruction, crime scene
analysis and to investigate active shooter incidents. As of 2020, at least 1,578
state and local public safety agencies across the United States have disclosed
having acquired drones. Of this, seventy percent were law enforcement entities.
For local statistics, Florida Polk County Sheriff's office publicized that they have
flown more than 750 drone missions and this helped arrest 31 suspects and have
resulted in finding five missing people. This brings attention to the importance of
our project and drone using vision navigation in the present and in the future.

From a civilian standpoint, vision navigation drones are mainly being used
for entertainment purposes. Such as, take aerial video footage for movie scenes
or aerial photos for art. There is a current civilian used vision navigation drone
that will follow the user (owner) of the drone as the owner walks/runs. This allows
for users to take footage of themselves hands free. Vision navigation drones are
also being used in entertainment in augmented reality video gaming. This occurs
where a handheld device, such as a smartphone, is connected with the vision
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navigation drone via bluetooth. The drone will then prompt the user to explore its
physical surroundings with an augmented reality displayed on the screen,
allowing for its users to seamlessly integrate their physical surroundings with the
virtual world.

There have been some senior design projects in the past that have utilized
object detection algorithms. Most recently, an automatic pet feeder was created
in Spring 2022 that detected LED lights on an animal’s collar with a stationary
camera. Not only will this project have a more sophisticated object detection
algorithm that does not rely only on an emissive light source where the distance
is less of a factor, but it will also be integrated directly on a flying system where
the sizes of the targets in question are constantly changing and moving around.
This design is able to work in a fluid environment, not just a static one.

There is also recent work in drones being used commercially for building
inspections and power plant inspections. This allows for a more accurate reading
and for concrete data to solve real world engineering problems within the
commercial industry. For example, once a building is built and developed, there
are companies with infrared drones that scan the buildings to determine air
conduction unit leaks. This is beneficial to the owners of the buildings as well as
the environment in using our resources the most efficiently as possible. Another
example in commercial use is on wind farms. Wind turbines are at high altitudes
with extremely large blades. These blades are exposed to the external
environment and need to be regularly inspected to ensure reliability of the wind
turbine. Technicians do need to climb outside of the turbine to inspect the blades,
this poses a high risk for personnel. Therefore, wind farm owners are investing in
vision navigation drones to take aerial footage of blades to inspect for cracks in
the frame and general wear and tear.

2.7 Engineering Specifications

As with any engineering project, this project has its own requirements
specifications. These requirements are what the team will use as a final goal for
the completed system. Prior to the final presentation of the completed system,
the team will choose several of these specifications to be the most important,
called the core requirements. These core requirements are what the team, and
judges, will use to determine whether the team was effective in making a
successful product. It is these few goals that the team is consistently striving the
hardest to achieve through the design, development, and integration processes.

The team will also use the rest of the specifications as a guide throughout
the design and building processes. While they may not be directly judged on
them during the final presentation, they will still do anything within reason to
reach them. These requirements are still very important for the group to achieve.
The team wishes to make the most sophisticated system possible within the time
allowed, and meeting all of the requirements is essential to this goal.
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The team believes that meeting each of these requirements to their fullest
extent will not only create a safer and more reliable system that can consistently
deliver results, but it will also encourage synergy throughout the entire build, and
reinforce the drone’s capabilities so that its core requirements are met with
greater confidence. Achieving every goal and requirement is the group’s ultimate
goal for a successful system.

As introduced above, the object detection drone is a standard small,
quadcopter drone that will recognize several target objects, and be able to
manually move around the obstacles and land safly at a designated landing
zone. It will also have a fully rotating LIDAR scanner to measure the distance to
the environment and tell the object detection software to start running. Below is a
table with basic specific engineering specifications we are hoping to achieve with
our built drone and built machine learning algorithms.

Table 2.7.1: The specifications that is met once the drone is completed in terms
of measurements, weight, capabilities, and actions:

1 The system should be able to fly manually in all 3 dimensions

2 The system should be able to hover in place

3 The distance sensors must measure distance of target objects up to
at least 1 meter with a 0.1 m accuracy

5 The machine learning model must classify objects within 5.00m and
have a confidence above 85%

6 The drone must be calibrated to pass pre-arm checks for safety
purposes

7 The drone should only be flown in open indoor areas




Group Three: Object Detection Drone 10

2.8 Block diagrams

In order to effectively reach the goals of the project, the tasks had to be
evenly split up among each of the group members according to their specific skill
sets. We have Cannen and Derek who are computer engineering majors and
focused on the machine learning aspect. Kevin who is an optics engineering
major who is focused on the camera and laser for machine detection and
Jazmine who is an electrical engineering major who is focused on current and
previous technologies, part specifications, and building the drone. Each subset of
blocks is labeled according to the timeline of the project that they should be a
part of.

For instance, the first chart lists the specific hardware components of the
drone, and which member is responsible for the given subset. The different
components, like the optical system and drone flight calibration system, must
work together in conjunction with the Al to efficiently move the drone through the
testing environment.

The second chart details the different aspects of the software of the drone.
This describes the different types of software input that the drone will receive
from all of its subsystems, and how it will use that information and interpret it.
Each relevant member is in charge of a specific aspect of the acquisition of the
data, the artificial intelligence’s interpretation of the data, and the relevant
commands and instructions that the Al will send back out to the hardware of the
drone to complete.

Finally, the third chart is the action plan diagram. The group found this
necessary to add because they wished to have a clear diagram to follow that
outlined all of the actions that needed to be taken for the project to be successful.
This action plan diagram will assist with the flow of development. Only once
certain tasks are completed can the different subsystems of the project come
together and be fully integrated with one another.

2.8.1 Hardware of Object Detection Drone

The hardware of the drone needed a clear outline for its functionality. The
group used the following chart to characterize and organize each segment of the
hardware into parts that each team member would be in charge of. This diagram
will help the group divide their labor and know which member to turn to if any
segment of the drone was faulty. This diagram is shown in
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D Flight Moduls
D Rotary Modul
Sensors
l:‘ Processing Units Servo Motor

Proximity Sensors

Raspberry Pi Pico/
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[ Raspberry Pi 4b

Pixhawk

LiDAR Sensor

Figure 2.8.1: Hardware block diagram

2.9 Software of Object Detection Drone

The model below illustrates the steps we are taking in order to produce a
trained drone. Drone input, displayed in orange, is provided via simulated camera
and sensor feed. This data is then fed through our training process, highlighted in
green, Our training process is a convolutional neural network built to classify
images. In this portion of the project, we are giving images to look at and
compare. Each image contains a label and bounding box representing what is to
be identified within it. The CNN will make predictions according to the gradient in
place, then adjust after being told what was correct. After many simulated
training runs, and adjustments to the training gradients to get the CNN to
produce a model that is as accurate as possible, we will then transfer the trained
model to the real drone and do test runs in an actual course. The last section of
the diagram is the section in green. This represents the transition from finalizing
the CNN’s training and applying it in a real-world state.
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Figure 2.9.1: Software block diagram

2.10 Action Plan Diagram

The team decided to create an ‘Action Plan Diagram.” This plot outlines
the main jobs of each of the team members during every section of the project:
research, building/testing, integration, and demonstration. It describes the
general actions and segments of the system members are in charge of. This will
help organize each member’s responsibilities in the project. It is not as detailed in
terms of functionality as the previous block diagrams, but the team decided it was
necessary for them. It is less of a block diagram for components, and more of a
block diagram for people. It is a guide for the development of the project as a
whole and it organizes team members
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2.11 Training Reward System Diagram

In the future, if we are able to reach the navigation training system, we
have chosen to utilize reinforced learning. This is basically a reward-based
training system that influences the neural network to make more accurate
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predictions. When the model makes a prediction, it is adjusted based on if their
prediction resulted in a “reward.” Below is a diagram describing the process of
training the drone. Rewards can stem from any measurable source. Performing
the task correctly is only one. When factoring in parameters such as collision
avoidance, time constraints, and other testing factors as the diagram displays,
training efficiency can be improved and specialized:

Drone is Met with Drone Punished for Celliding with Drone Rewarded for Avoiding
Obstacle Obstacle Obstacle

Drone is Given Time Drone Punished for Completing Drone Rewarded for Completing
Limit for Completion Course within Set Limit Course within Set Limit
5:00] G ovo
§o"2 -

o0 =
0:0 = N

Figure 2.11.1: Drone navigation training process
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3 Research and Part Selection

Today’s drone capabilities are quite fascinating and the technologies that
have been implemented with drones have revolutionized the flight industry
completely. The devices take amazing aerial images and recently have been
integrated with augmented video game playing. With the ability to take aerial
imaging, drones have been used for a wide variety of tasks from entertainment to
rescue and search missions. They have the ability to collect data and inspect
areas that could be dangerous to humans. Drones can also be used for medical
and emergency delivery during catastrophes by delivering much needed aid to
areas that are traditionally hard to reach with land based vehicles or large
helicopters.

Drones have provided footage to take humans where most humans
cannot go and have made many geological discoveries, such as finding tribal
markings on the top of large mountains or canyons. On the other hand, this same
technology can be used to perform illegal activities like invasion of privacy, social
disruptions and drug delivery. Therefore, a lot of research and technological
advancements are occurring on drone design, safety and security.

Angular momentum is a very important physical quantity when building
autonomous flying vehicles because it is a conserved quantity and the total
angular momentum of the closed system remains constant. This is because the
momentum has both a direction and a magnitude and both are conserved.
Applications of the gyroscope are seen in gyrocompasses, replacing magnetic
compasses to assist in stability and be used as a part of the inertial guidance
system, in submarines as an inertial navigation systems and can be used to
maintain direction in tunnel mining.

The servos is shortened for the term used, servomechanism, in control
engineering which is an automatic device that uses error-sending negative
feedback to correct the action of a mechanism. This term is used on systems
where error control signals control mechanical position and speed. It is a
powered mechanism producing motion at a higher level of energy that the input
level, an example can be in the brakes and steering of cars where feedback is
employed making the control automatic, hence automatic driving control or cruise
control.

A question then presents itself: What exactly is a drone or quadcopter?
From the development of small, radio controlled airplanes brought the interest to
development of creating a stable flying robot that can be controlled by a radio
frequency remote controller. To solve lateral flight, quadcopters depend on the
four turning motors attached with blades on each end to give it thrust. Two on
one side spin clockwise and the other two on the other side spin counter
clockwise, this provides the possibility to spin, move forward and backward and
side to side.
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The four propellers at each end have a blend of pitch mechanisms and
coaxial rotors. The pitch mechanism makes the drone agile and resistant to
winds. The coaxial rotors allow for the two layers of the rotor to provide stability
to the blades. These agile and steady flying robots are ideal for aerial and mobile
vision. This design became popularized and led to quadcopters becoming the
most common drone technology sold, making the drone market a $1.2 billion
dollar market today.

Drone systems work with Global Position Systems (GPS) which allows
the UAVs to be remotely supervised through a software embedded system
working directly with GPS positioning modules that are built in. GPS utilizes two
main standards for routing and positioning the unmanned aircraft. This is also
called the code stage and the transporter stage. GPS is driven by satellite
technology and does its best for accurate precision when the signals can be
clearly sent to the device but what happens when GPS is unavailable? As GPS is
lost indoors, underground, and in between buildings. For autonomous flying,
drones cannot rely on inaccurate GPS coordinates due to electromagnetic wave
disturbances from the environment.

Autonomous drones are currently trying to address this issue with vision
navigation drones. Vision navigation allows the drone to operate and make its
own decisions when GPS is unavailable. This is done by using the thermal
feedback from the attached cameras to avoid obstacles while also identifying
objects in its view such as trees, buildings, humans and much more.

Complete vision navigation GPS-denied systems for drones are currently
used primarily for governmental purposes and are still undergoing extensive
research. There are tech start up companies working on the optimal performance
and safety measures for government technology as well as bringing this product
to the market.

3.1 Research

This section will expand on technologies related to the project and how
they are useful research pieces. It further examines the field of autonomous
drones as it stands today. There has been a great deal of development
throughout this area of study, with leaps in development in both the commercial
sector and military sector.

How these drones fly and interact with the objects in their environment is
influenced by the Al making them. This is why this section also has a heavy
focus on the current state of artificial intelligence and neural networks. There is
an increasing desire to lower the dependence on human controllers. People can
often react too slowly to events, especially in times of high intensity and stress.
So, there is naturally a desire to instead depend on artificial intelligence. In an
ideal scenario, a mature Al could respond to instructions ro threat faster, and
more efficiently than a human can. Al has also begun to prove itself to have more
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creative abilities. Artificial problem solving intelligence is not far off from modern
capabilities, and an autonomous drone system could benefit from it greatly.

The following sections compare the group’s ideas and design with current
methods and technology, and currently available products. They discuss in detail
what these technologies are as well as how these technologies are going to be
implemented with the final project in the spring.

3.1.2 Existing Similar Products
“Learning Vision-Based Flight in Drone Swarms by Imitation”[11]

Research study was submitted May 27th, 2019 and published August 14,
2019. The topic revolved around the way in which drones within a swarm detect
each other. Typically, this is done by marking each drone so they can identify
each other or each of their positions are broadcasted to one another so they can
avoid one another. This study was conducted in hopes of creating a new method
of collision detection amongst a decentralized drone swarm. There are similar
paths that we are following to reach our goals. These are a few of those
similarities:

3.1.2.1 Training

The team of researchers dove into the machine learning route, specifically
imitation learning, which is a form of supervised learning. Our system is trained
using reinforcement learning but there are still valuable lessons that can be
learned from their studies.

3.1.2.2 Simulation

In their experimentation, they utilized simulations to create an easier to
control environment. Simulation also makes it so one of the only limiting factors
for learning speed is the hardware on which these calculations are being made.
These simulations were done in a software named Gazebo in conjunction with
the autopilot system PX4 Autopilot. Simulation is the best way to start our training
without causing possible damage to the drone itself. Training will also be
completed at a much faster rate. Gazebo may be our best choice as it is
supported by PX4 and is recommended for “object-avoidance” and “computer
vision”, as stated in the PX4 User Guide.

3.1.2.3 Control System

Our drone will utilize PX4 as its control system. PX4 has a large directory
of open-source code paired detailed tutorials that will most definitely work to your
advantage. Less hassle with the control system will allow for more time actually
training the drone to navigate through the obstacle course.
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3.1.2.4 PyTorch:

The team made use of the machine learning framework PyTorch to create
their convolutional neural network. We will also be using this framework to create
our own neural network to train the drone. This will prove to be the most difficult
portion of the software implementation, as there are several architectures and
prediction models to use and then configure accordingly.

“Live Detection of Foreign Object Debris on Runways Detection using
Drones and Al”’[12]

This study goes into detail about the problem current detection systems
have to deal with on airspace runways. “Foreign” objects and “debris” have the
potential to cause runway disasters so there must be a way to tackle this
problem. At the time of this papers’ submission, the most often used method was
mechanical detection methods, ie: various sensor technologies. Each of these
technologies came with their own disadvantages. The authors of this paper state
that with advancements in current Al and object detection, drones were proposed
to be a valid way of avoiding disaster.

3.1.2.5 Machine Learning

The team utilized Microsoft Azure to fit both of their learning and object
detection needs. They used Azure Custom Vision to develop their object
recognition algorithm. This is a cloud service that allows those who do not need
onsite machine learning or do not have someone who is knowledgeable in
making a neural network. Microsoft makes it easy for anyone to implement
computer vision models for image recognition, as their models can be exported
directly onto a system to make predictions. We are building the convolutional
neural network ourselves through PyTorch, but it would be helpful to explore the
Microsoft Azure documentation for potential solutions.

3.1.2.6 Camera Clarity

In this study, two different cameras were used. One was specifically for
training purposes, while the other was used for live testing. The “Mavic Air 1” that
was used for training was chosen mainly due to its quality to cost/availability
ratio. This camera could still support higher resolutions with decent frame rates
and at the same time be replaced easily if damaged. The “Phantom 4 Pro”
supports higher frame rates with more choices for aspect ratio, but was more
expensive because of the higher quality video. If training with the lower end
camera met expectations, it can be assumed that substituting with a higher-end
camera would work even better. Their selection was highly dependent on the
weather conditions and range that their drone would have to cover. In our case,
these issues can be disregarded because the course is inside a wide open room
with only a few obstacles. Our camera does not need to support resolutions as
high as 4k nor have frame rates over 30 fps either. Our drone is moving at a
comparatively slow speed and has time to calculate and make decisions. There
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is no urgency to navigate the course like how they had to identify objects quickly
to keep the runway safe.

“Improvement of Image Processing for a Collaborative Security Flight
Control System with Multiple Drones”[10]

Research study was added to the archive on July 23rd, 2018. The study
was done to improve automated drone flight control systems due to the rapid rise
of the drone market. The concept shown was that of a “slave” drone tracing a
“host” drone. Their problem was when the “host” drone reached max speeds, the
observing drone could no longer recognize the “host” and trace it accurately.
They already had a method in place but were looking to improve on the speed of
it.

3.1.2.7 Image Recognition:

The method of image recognition was done by using OpenCV. OpenCV is
another open source library dedicated to Computer Vision applications. This
library is for the languages C++ and C but has expanded to Python as well with
OpenCV-Python. They stated the processing time but did not go into the learning
process. The purpose for this experiment was to improve the algorithm that was
already in place, because the drones were moving too fast to be recognized.
Fortunately this will not be a problem for our system, as there is no object with
motion that will need to be identified. Processing rate per frame will not be a
deciding factor in our case when we are not moving at speeds such as them (as
high as 8 m/sec). Their solution was to calculate the optimal image size, as well
as distance to trace the drone effectively. The graphed results display the
extreme drop off of recognition rate for four different image sizes at each of their
optimal follow distances. This may foreshadow issues we could have if we were
to expand the dimensions of our training environment so it is something to
consider.

3.1.2.8 Camera Clarity

The requirement for a high quality camera was evident by the problem
they were having. Tracing a drone moving at 8m/sec would require a high frame
rate and high resolution camera. They utilized a camera with a 4096 x 3072
resolution, higher than 4k. Again, the velocity of the drone is their cause for this
requirement. A camera module like this would be excessive for what we are
trying to achieve.

3.1.2.9 Objects

The objects needing to be identified in their studies are astronomically
smaller than the obstacles in our course. A nail or a bolt can cause problems for
vehicles on the runway so it is necessary for the very high resolutions, as pixel
data is vital in that instance. Our objects within our testing environments are large
and contrast heavily with their background. Camera resolution will just need to be
a reasonable 720p or 1080p which is possible for our Raspberry Pi camera while
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maintaining at least 30 fps. Initial testing in our project also only calls for
pre-mapped object placement. This means that the drone will know it is there, it
will just need to recognize and classify the obstacle in its way, rather than have
no context to the environment.

3.1.2.10 Propeller Safety

“Safer and Longer-flying, Actively Tethered Drones Open Skies to More
Uses”[10]

Research was done at the University of Cincinnati to create a drone with
the goal to create a simple way of navigation by implementing a tether that is
user-controlled. Tethered drones are often used for stationary monitoring, relying
on a source of electricity on the ground to provide longer flight times. UC helped
the Ohio Department of Transportation implement some of these systems to
monitor traffic or construction projects where an eye in the sky provides a
valuable perspective.

Tethered drones are connected to the ground to supply the energy required to
allow for omnipresent surveillance over a limited area. Moreover, the tether
allows for secure communication and transfer of information such as a video feed
from the air vehicle to a ground station, making it resilient to cybersecurity
threats.

For this project, rather than having a tether to prevent crashing since the
user has control over the whereabouts of the drone, we will implement a
propeller cage which, even in the event of a crash, will decrease any possible
safety risks, although in the development stages this method could become a
possibility due to its ease of control even with machine learning.

3.1.2.11 Live Testing

For their live testing environment, they streamed the video live to their
database. This is probably most optimal because the drone does not react to the
detection results in any way. The point of the drone is to relay what may be on
the runway and that is it. There lies the difference between our problem and
solution. Our drone is going to have to make decisions after recognizing what is
in front of it. Streaming would still be plausible but onboard decision making
would result in quicker course completion. Onboard processing ends up being
more expensive, but reduces potential faults that may stem from failure to stream
data between the drone and a processing unit.

3.2 Image Classification and Object Detection

Image classification is the process of scanning large sets of images and
analyzing them to discover features that make them identifiable. This is done by
first breaking each image into a grid composed of their pixel values. A low-level
use of these values would be for edge detection. Object detection is the step
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above image classification. This includes drawing conclusions as to where the
object is within the picture itself.

3.2.1 Classification

Expanding upon the concept, classifying the outline of a common item
such as a balloon would be manageable. If given a set of images after the edge
detection process is done, some of which are balloons, some are animals, some
are buildings, we as humans would be able to organize them into their own
categories. Without color or context, the shape of a regular latex balloon is still
very much identifiable.

A latex balloon is ovaloid with one end being larger than the other, and a
string hangs below the smaller end. We can categorize these images based on
our own knowledge learned from years and years of experiencing the world.
Image classification is about applying our human logic in this same way. We want
to teach our system to be comfortable in identifying objects by feeding it images,
letting it pick them apart, then telling it what each image is. Then when images
with similar results are fed in again, they can make guesses. This goes cycles
and cycles to improve results.

3.2.2 Object Detection

Progressing past the idea of image classification/recognition, object
detection is a more detailed process. Conceptually, an object detection model
reads an image and makes a prediction as to what is contained within an image,
as well as its whereabouts. This can include multiple predictions within one
image. The imageset that the model would train on includes another label,
turning this into a multi-class classification problem. This new label is composed
of x-y coordinates paired with a height and width. The label acts as an indicator
of where the identified object is located. Predictions after the model is trained
would then be these coordinates with their associated object name.

3.3 Convolutional Neural Network (CNN)

The training, as discussed before, is done with a CNN. A neural network is
a network of algorithms used to digest data in a way that is similar to how a
human would. A single network consists of many nodes, each with their own
input, weight (indicating level of importance), bias (indicating when the node
should pass its output), and an output. The nodes act as different groups and the
pathways between the nodes send the relevant information to the grouping in
which the machine learning software believes the classification it belongs to.

For example, a CNN that we use generally within the public is within
website login security. When a cache box is given for the website to determine
you are not a robot and hacking the network, you need to identify particular
objects within a frame. The objects that are chosen must fall into the specified
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category in order to pass the cyber security algorithm. This online security is just
a minor example of everyday usage of CNN and neural network algorithm use in
everyday machine learning. In our project, the CNN is used for image
classification, which will then aid in navigating through the course.

3.3.1 Layering Process

We will first need to implement the input layers for our CNN. This is done
by introducing a very large dataset full of images. These layers are then to be fed
through convolutional layers. Convolutional layers are made up of filters with
2-dimensional properties that are learned as the input is convolved with these
layers. Convolution involves taking the dot product of sections of the inputted
image with the convolutional filter.

An activation function is applied, creating an activation map in the
process. Every activation map is then going to be combined to create the output.
This output is fed to the next layer in the CNN is the pooling layer which uses a
technique called “down sampling” which simplifies the learning parameters and
lessens the computational load. The process starts all over with the node feeding
this output to the next node as its input. An illustration of this is displayed below
in Figure 3.2.

Input Convolufion Layers

Image (Using Activation Function) Pooling Layers Node Set. ) | Qutput

Fig 3.2: Convolutional Neural Network Diagram

Many take this idea of a convolutional neural network and produce their
own architecture that fits their needs. We will expand upon several architectures
that are open-source. The key take-away is that CNNs are mostly used for image
classification. The convolutional layers just allow the network to distinguish
between pixel properties in a way that other baseline neural networks can't.

3.3.2 Reinforcement Learning

The collective effort and knowledge learned from each of the nodes are
combined to make a decision on how to react when met with a task. We
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construct our CNN to digest a very large image-based dataset in order for it to
pick up on the details that make our obstacles distinguishable from each other.
Then when our models are used in conjunction with the drone simulation, the
CNN can make accurate predictions on how to navigate appropriately.

At that point, the CNN is taking in live-video feed, analyzing each frame
and making decisions that fast. All at the same time, we can reinforce its learning
potential by signaling when it is correct with a “reward.” This reward is essentially
giving it the “correct” value in comparison to the prediction that it made. For
example, when our CNN is being trained and is fed an image of a balloon, if it
predicts that the image is a ball, then we can penalize it. The reinforced learning
affects the CNN'’s ability to create its weights and learn when it is succeeding
without having to intervene and configure the CNN after making a prediction.

3.4 Recurrent Neural Network (RNN)

A Recurrent Neural Network is another type of neural network. These
neurons feedback between each other within the hidden layer indicated in Fig.
3.3. This allows them to hold all previous information that has flowed through
them and current. This neural network will not be useful in our case though as it
is typically used for language and speech recognition purposes. This makes
sense with its ability to build up context within a sentence by learning how the
placement and sequence of words are utilized to form a sentence with a specific
meaning.

With the purpose of an RNN being defined, we can say that we will not be
using one for our image classification. There is no possible way for the RNN to
pick apart images in the way that the CNN can, so there is no reason to utilize it.
If we were to train to understand speech for the drone commands, then | have no
doubt that we would be able to make use of one. This was an original goal of
ours but have scrapped that idea as it may make the overall task we are trying to
perform unrealistic to acheive.

Input
MNeurons

Hidden Neurons Cutput RNM

WA

Fig 3.3: Recurrent Neural Network Diagram
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3.5 Activation Functions

For the construction of the convolutional neural network, there is a
decision to be made about the type of activation function that we is using. An
activation function adds non-linearity to the CNN, allowing it to conform to more
complex non-linear patterns. After the input is convolved, it is fed through an
activation function that decides if the neuron is activated or not based on weights,
biases and the type of function used. RelLu is one of the most popular activation
functions today because of its ability to avoid the “vanishing gradient” problem.
This problem describes the outcome that other activation functions have, such as
sigmoid, when there are many layers. Sigmoid takes any input and compresses it
into an outcome between 0 and 1, meaning the derivative becomes increasingly
smaller as it passes through neurons.

3.5.1 ReLU

The Rectified Linear activation function, ReLU, utilizes the max function to
produce its output. The equation for ReLU is provided below.

Output(x) = max(0, x),
Where x is the input value

This is a simple comparison between the value of the input and the
number zero. If the input is positive, then the output equates directly to the input.
If the input is negative, then output is zero. This makes it non-linear to negative
input, and linear to positive input. ReLU is probably the most common activation
function, because it is so simple and it doesn’t have the problem of “vanishing”
gradients that other non-linear activation functions have. We will most likely be
using this activation function for its simplicity and performance.

3.5.2 LeakyRelLU

LeakyReLU attempts to solve the problem of a “dead” neuron that occurs
with the ReLU function. The equation for LeakyReLU is provided below.

Output(x) = max(0.01x, x)

As described previously, RelLU neurons can essentially become
permanently inactive depending on the input. Rather than sealing a neuron to
output O, reducing the input to one-hundredth of its original value keeps the
gradient intact, even though it may be small. Conceptually this makes sense, but
often in execution it can fall short of expectations. This is because non-linearity is
lost when multiplying by this constant. The dying neurons are potentially
resolved, but there is loss of efficiency due to the introduction of more training.
Graphing both ReLU and Leaky RelLU, we can see slight differences in their
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output. YOLOvV8 makes use of the Leaky ReLU model though, so we may need
to make use of it.

RelLU vs. Leaky RelLU Activation
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Figure 3.5.2: ReLU vs Leaky RelLU functions graphed

We can see the similarities very well between the two activation functions,
but those slight differences don’'t seem to have much weight to them. Graphing
the derivations at each point one would then be able to see the key difference
between the two functions. This is shown below in Fig 15.5.

RelLU vs. Leaky ReLU Activation Slope
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Figure 3.5.2: RelLU vs Leaky RelU functions point derivations graphed

With ReLU having a slope of zero, we can see the non-linearity and where
the dead neurons originate from. In the case of Leaky RelLU, there is still hope
for neurons, but the function becomes a linear one, as negative values become a
multiple of itself, rather than being cut off.
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3.56.3 Sigmoid

The Sigmoid function is used to crush large inputs in the range of [0, 1].
This simplifies the output of the neuron to in an “on” or “off’ state. The equation
for Sigmoid is provided below.

Output(x) = where x = input value (3.5.3)

—x

The problem with this activation function is that through many layers, the
gradient will vanish. This is because of the fact that even with large changes in
input, the resulting output will always be between 0 and 1. For this reason,
Sigmoid is not a preferred option in today’s world. We will most definitely not be
making use of it.

3.5.4 Tanh

Tanh is very similar to the Sigmoid function, but the range is expanded to
[-1, 1] and is now centered at the origin. The equation for Tanh is provided below.

Output(x) = tanh(x) (3.5.4)

The reason tanh is an improvement over sigmoid is because the output
ends up being normalized, averaging at 0. This still doesn’t solve the problem of
“vanishing” gradient though. Tanh is not much of a choice nowadays, and we will
not be utilizing it either. Both Sigmoid and Tanh are graphed in Fig 3.5.5, where
we can better see the similarities illustrated.

Sigmoid vs. Tanh Activation
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Figure 3.5.5: Sigmoid vs Tanh functions graphed
3.5.5 Swish

Swish was introduced by Google and acts as an alternative to ReLU. The
swish function makes use of Sigmoid within its equation
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Output(x) = xsigmoid(x), where x = input value

The function removes the flattening effect the original sigmoid function can
have by multiplying the result by its original value. References showed that this
function worked better on deeper models with higher complexity datasets. This
activation function is utilized in the YOLOv5 model, which is one of the most
popular real-time object detection models out right now.

RelLU vs. Swish Activation

== RelU == Swish

X-Value

Figure 3.5.6: ReLU vs Swish functions graphed

3.6 Loss Function

Loss functions are the functions used to measure how well a model is
being trained to work the input dataset. There is a desire to keep loss low, which
in turn makes our predictions more accurate. When a neuron is met with an input
that when fed into a loss function, results in a high loss, it should then adjust its
weights to reduce it. There are a few functions to choose from, examples being:
Cross Entropy, Mean Absolute Error, Mean Squared Error, Root Mean Squared
Error, and Hinge. These functions are also ready for use in Pytorch by importing
the torch.nn module

3.6.1 Cross Entropy

Starting with the cross entropy function, we have identified its functionality
and its typical application. There are actually two versions for Cross Entropy,
defined for when the number of classes is equal to two, and when there are more
than two classes. When there are only two classes, the Binary Cross Entropy
function is used. When there are more than two, the Multi-Class Cross Entropy
function is used. These functions measure loss between pairs of probabilities for
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a randomly chosen variable. The equations for both versions of this loss function
are provided below.

B Loss == (ylog(p) + (1 — »)log(1 — p)
n
MC Loss =— j§1 y,log®, )

Where ‘y’ is the binary value, ‘p’ is the predicted probability, and ‘n’ is the number
of classes

These functions are the most commonly used loss functions for
classification. The random selection of comparisons that are made in addition to
the logarithmic loss formulation combine to create an effective way to train a
model. The logarithmic loss accentuates large errors, making them more likely to
get snuffed out and improve the model’s predictions. Random selection removes
some of the biases that would have been found in normal means. From our
observations, many CNN packages utilize this loss function, so we will as well.

We graphed the Binary Cross Entropy Loss for both binary inputs. In this
graph, it is easy to see the logarithmic trend for the function. When the binary
indicator is true, and prediction probability is high, then loss is low. The opposite
is true for when the binary indicator is false.

Binary Cross Entropy Loss
== Binary Cross Entropy (y =1) Binary Cross Entropy (y = 0)
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Figure 3.6.1: Binary Cross Entropy Loss
3.6.2 MAE

Mean Absolute Error, also known as L1, is one of the most commonly
used loss functions for linear regression. MAE takes the sum of the absolute
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value of differences between the actual value and the measured/predicted value.
The equation for this loss function is provided below.

n

1 N

Loss =X Iy, — |l
j=1

Where ‘y},’ is the target value and /3;] is the measured value.

In many cases, MAE is seen as more resistant to outliers because of it
being the average error. A single outlier may only move the average slightly if the
number of errors being summed is large. The function is graphed below in Fig
15.8. Predictions that result in output values closer to zero from either side will
end up with lower loss values. The opposite is true in cases where there is an
output that scales farther and farther from zero, and it will end up with an equally
great loss value.
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Figure 3.6.2: MAE Loss Graphed
3.6.3 MSE

Mean Squared Error, also known as L2, is the most popular function for
linear regression. MSE builds off MAE and squares the difference between the
desired and measured value, then sums each iteration together. The equation for
this loss function is provided below.

n

1 ~.2

Loss =X ;=)
j=1

When the difference is greater than one, the loss becomes much greater
due to the squaring. This means detection for errors is harsher and will train the
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model to become more accurate. This also means that outliers have a greater
effect on the overall training. The network will end up overcompensating for even
a single outlier as it may alter the overall loss that greatly. The MSE function is
graphed below in Fig. 3.6.3. We can see the similarity to the MAE function, but
loss scales exponentially now instead. This illustrates the heavier bias against an
error value that the function has over MAE. Small error values that may be
acceptable when fed through an MAE function, would not be under MSE.
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Figure 3.6.3: MSE Loss Graphed
3.6.4 Hinge

Hinge is another classification loss function. Hinge’s primary use is geared
towards support vector machines though, which is another method of classifying
data over a neural network. The equation that describes the loss function is
provided below.

Loss = max(0, 1 — /3;]. * yj),

Where ‘y],' is the target value and ‘yj’ is the measured value

The Hinge loss function sets a boundary for values to be measured
against. There are also two outer bounds, £ a set distance from the main
boundary. Values that plot outside the outer bounds are given a loss of zero or
one, depending on the bound they lay outside of. Within the outer bounds but not
touching the main boundary are given a loss between zero and one. And those
values that touch the main boundary are automatically given a loss of 0.5. This
organizes the inputs into three categories that make adjustments clearer to
compute.
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In Fig. 3.6.4, we have simulated the separation process for the Hinge Loss
function. Analyzing the points on the graph, we would be left with several
conclusions.If desired, the predictions outside the lower bound can be given a
loss of one, labeling them as highly undesired, or as one and accept them. The
three points within the outer bounds are given an arbitrary loss value. Lastly, the
prediction lying on the main bound is given a loss of 0.5. The predictions are now
organized and the CNN has the ability to weed out undesirable predictions
depending on which outer bound we want to label as a high loss identifier.

Hinge Loss

@ Main Boundary Lower Bound == mm Upper Bound Prediction

Prediction Value

Desired Value

Figure 3.6.4: Hinge Loss Graphed

3.7 Programming Language: Python

Python is one of the most popular programming languages, and
reasonably so. Python values accessibility above all else with its simplified
syntax and many abundance of useful packages and libraries. Python isn'’t
limited to a single OS, as it can be run on Linux, macOS, Windows, Solaris, etc..
Pair this with the fact that Python scripts can be made to run at a much faster
rate with a GPU, this makes it a great money-saver for companies that don’t want
to invest in cloud services from companies like Microsoft (Azure), Amazon
(AWS), Google (Google Cloud). GPUs can cover some of the ground lost by not
investing in these more expensive “Machine Learning as a Service” options
without losing out on too much productivity. The possibility of GPU utilization is a
big contributor to a project as well. We are using a system with a NVIDIA RTX
3060ti, which has 4864 CUDA Cores, and 152 Tensor Cores. This should prove
to be valuable in reducing our training time.

3.7.1 Distribution

PyTorch and TensorFlow are the two machine learning frameworks that
are popular in today’s world. Those were also the two options given to use by the
original sponsor as well. Our sponsor highly advised us to utilize PyTorch though.
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This was because the resources they had already dedicated to their own project
were done using PyTorch. That meant that we would have references for moving
forward with our project. Doing our own research though, we found that there
were more reasons to select PyTorch over TensorFlow. One was because of the
ease of implementation. PyTorch is described as being more in-line with the
original Python libraries. We believe this makes Python ‘easier’ to learn when you
already have knowledge of Python. Python is also known as an ‘easy’ language
to learn compared to others. The community backing PyTorch is also massive
and out-matches TensorFlow. For our own research, this would be much more
advantageous as this is our first time utilizing a framework at all. We can really
make use of the open-source packages that are out there to improve our
convolutional neural network. A downside for PyTorch is that we have to source
software to deploy our model onto the drone, but there is plenty of material to
cover that just from what we have found .

We are using Anaconda to manage our packages and run Pytorch on our
simulation system. This was recommended mostly for its access to a large
number of data science packages, which should aid us in building our CNN. Pip
is necessary for PyTorch installation onto the Raspberry Pi so its only utility is
with pre-trained models. Using Pip within the Anaconda environment will just
install the packages as normal with no complications tied to it. Anaconda also
grants the ability to update all packages with a single command. The package
management of Anaconda will make handling the CNN safer and easier

3.7.2 Libraries & Packages

The most important python library that we are using is obviously PyTorch.
PyTorch provides a deep box of machine learning tools along with an API with
extensive documentation to back it.

3.7.3 Machine Learning Language

Python is often the first choice when pursuing the machine learning route.
This is due to its amazing collection of packages and libraries, as well as a large
backing from the community that uses it. Because of its ease of accessibility
making it easier to learn and digest, open source code is compatible with many
other projects. The readability is just as beneficial to beginners as it is to
seasoned veterans of the language. Machine Learning can be very intimidating
with the implementation of complicated algorithms, but the overall simplicity of
Python itself relieves a lot of that tension. We are creating our convolutional
neural network in Python so we hope to take advantage of the benefits that it
provides.

3.8 CUDA Cores

CUDA stands for Compute Unified Device Architecture and CUDA cores
are components of Nvidia Graphical Process Units (GPU)[13]. They handle
similarly to a CPU core, but deal with a lower-level instruction set and are less
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complicated. They are especially good at parallel computing because of how
many Nvidia employed within a GPU. This works well in our case because less
complicated but more abundant sets of instructions are exactly what make up our
machine learning task. The fact that we can make use of these CUDA cores will
vastly improve our training speeds in every way.

3.9 Training Model Packages

In researching image classification and neural networks, we had made the
decision to use a convolutional neural network. We learned quite a lot about the
functionality of a CNN and the ways in which it can be configured. We also made
the decision to alter an open-source CNN to fit the goals and objectives of our
project instead of creating one from scratch. This was because we now know the
level of coding needed to create one, and it may take far too long and may be
beyond what is realistically achievable given what the rest of the project
demands. In this section, we will explore the options that we observed, and also
decide on which we are choosing, with a detailed reasoning to back our choice.

3.9.1 Microsoft - CNN

In searching for image classification models to choose from, big tech
companies were bound to be a possible selection. Microsoft has invested
extremely large sums of money into research based around artificial intelligence,
expanding yearly. This includes a hefty amount of resources dedicated to
growing the Machine Learning field. Microsoft is already known to provide
cloud-based applications through their Azure platform, and this includes machine
learning ones too. Azure Machine Learning is Microsoft's method of distributing
machine learning models. The amount of resources they have dedicated to
improving not only their ability to provide a machine learning product, but to the
growth of machine learning in general is impressive.

This gives them quite a bit of credibility and piqued our interest when we
found a sample CNN with instructions on how to deploy it for image classification.
Through further research, we found that their set of instructions utilized four
software design choices we were already fixated on. The first was obviously that
it was a CNN. This is important as it is optimal for image classification purposes,
which they note in the article.The second being that it was done on Pytorch. As
we have already decided on using Pytorch, this was another great thing to see.
The third and fourth were that they implemented the ReLU and Cross-Entropy
loss functions. These two configuration options were two that we had already
been looking out for, so it confirmed some of our hypotheticals.

These combined components meant that we would seemingly make little
to no alterations to the network in order to fit our project. Pair this along with the
fact that every bit of code is paired with instruction and explanation behind it,
using Microsoft's model is a seemingly great route. In the complete set of
instructions, they deploy the model onto a Windows machine. We will most likely
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be deploying on a linux-based system for the simulation portion of the project,
and then onto a Raspberry Pi for real testing. We can just cut out that part of the
instructions though, as the Pytorch model is what is most important.

3.9.2 Google - GooglLeNet

Google is another big tech company that invests an extremely large
amount of resources into artificial intelligence, which bleeds into machine
learning research. Google took a stab at it after being influenced by the winner of
the 2012 ImageNet challenge, LeNet. They produced their own open-source
architecture GooglLeNet in 2014. The neural network is one derived from CNNs
but is known as an Inception Network due to how the convolutional layers are
compartmentalized into what is called an “Inception Module”. Each inception
module is made up of convolutional layers with differing sizes and then
connected to sequential inception modules.

The code for this architecture is readily available on the Pytorch site with a
github repository and is a pre-trained model. There isn’t instruction paired with
this implementation but there is plenty of supplemental content to choose from
that are IEEE published. We see this as the least welcoming of the options, as it
has the least direction tied to it.

3.9.3 YOLO Detection - Ultralytics

After doing thorough research of image recognition models, we found the
open-source object detection system YOLO. YOLO stands for “You Only Look
Once.” This algorithm was originally introduced to the public in 2016 and has
gone through many iterations since then. Originally, YOLO was written in the
framework Darknet. The latest versions however have implementations using
PyTorch, so this piqued our interest. We found more information regarding this
algorithm on the website Roboflow.

Roboflow is a computer vision platform that specializes in classification
services. On this site, they provide custom dataset creation, which includes
object detection and image classification annotation that can be edited, saved
and downloaded at any time. Roboflow also provides open-source notebooks
that allow us to train an object detection model how we see fit. This would save
us a ton of time building our own model, as well as remove reliance on a high
performance local system, as training would be done online. The notebook
allows CUDA usage as well, essentially performing better than local training
would. The platform goes a step further and has their own python package that
can be downloaded and used to locally download a dataset, a model, and run
said model on any stream of data. They also provide a plethora of articles
covering steps on completing this process, not only on a Windows/Linux/Mac
machine, but also deploying onto a Raspberry Pi. This is extremely valuable in
our case as our drone is to be run on a Raspberry Pi. This is most definitely the
leading choice for obvious reasons.
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3.9.4 LeNet - “Ben Trevett’s Pytorch Image Classification”

The next architecture in the list is the “LeNet” architecture. This
architecture is made up of two pairs of convolutional layers that are subsampled
in between, and then are followed by three “fully-connected layers”. The author
explains that the architecture is modified and optimized for “classifying
handwritten characters”, so it may not be applicable in our project but we may
have to test on a larger scale. The architecture has its roots set all the way back
in the year 1998, so it has been through decades of testing, resulting in decades
of optimizations. Again the testing is done to identify a written character, using
the same dataset as before. The CNN allows for a lot more precision in
distinguishing the pixels in the images apart so we expected far better results.
Trevett also makes use of the ReLU function as the CNN'’s activation function.
This is convincing us to use the ReLU function over the Leaky RelLU function in
our own project. He also goes on to utilize the Cross-Entropy loss function, which
influences our loss function choice as well. The architecture yields varying
results, with some images predicted at a rate of 99%, and some as low as 85%.
However, we did observe that the images with lower accuracy were difficult to
identify from our own eyes. This may be a suitable architecture, but more testing
would be required.

3.9.5 AlexNet - “Ben Trevett’'s Pytorch Image Classification”

The third architecture listed is “AlexNet”. AlexNet is another model that
uses a modified CNN. Originally, this architecture was meant to utilize parallel
processing between two GPUs at the same time. The reason for this is that there
are two “paths” of training going on in parallel with each other that then converge
to make a prediction. Each path consists of alternating convolutional and
max-pooling layers. This was the winning architecture for the ImageNet
challenge in 2012. This led it to become a very popular image classification
model. The author presents an altered version of AlexNet that allows for use on
only one GPU. There does not seem to be an explanation for this within the
notebook, but from what we found, it is possible through copying layer data to the
CPU for temporary storage. There are also memory allocation methods from
Nvidia that may make this possible as well.

Moving onto the experimental results displayed in the notebook; the
dataset used is much more complex than previously used. This set includes
many small full color images and it is called the CIFAR10 dataset. The fact that
full color images are being used instead of gray scaled images made this a much
more promising architecture. If it can classify complex images that are found in
this very popular dataset, we are confident that we can alter it to fit our needs.
ReLU was again used as the activation function. The loss function was also
Cross-Entropy again, so there appears to be popularity with this activation-loss
function pair. The results were much less accurate than the previous two models,
but this is to be expected. After only 25 epochs at ~14 seconds per epoch, the
training accuracy was up to 78.1% and the validation accuracy was 75.9%. We
came to the conclusion that with longer epoch times or more epochs, the
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accuracy could be a bit higher. The author also found an error within the dataset
where the model predicted correctly, but the dataset labeled the image
incorrectly. Overall, this seems like a possible implementation for our project, but
the YOLO algorithm still reigns over it.

3.9.6 VGG - “Ben Trevett’'s Pytorch Image Classification”

The next architecture is another commonly implemented one, and it is
named “VGG”. Previously discussed, AlexNet was the winner of the 2012
ImageNet challenge. VGG was the winner of the 2014 ImageNet challenge,
which lends an explanation as to why it is so popular. This set of models is
another one that utilizes a CNN style. VGG is commonly notated with a number
to signify how many convolutional layers, for example: VGG-16 has sixteen
convolutional layers. Trevett explores configurations with 11, 13, 16, and 19
convolutional layers.

Within this experimentation, Trevett also makes use of a pre-trained
model. The pre-trained model can “transfer” its learnings and apply them to
another dataset. This saves time, but brings the model to a point where it learns
much slower. This is seen within the results with each epoch taking around 8
minutes. The prediction accuracy ended up being much higher than that of
AlexNet though. After 5 epochs, the validation accuracy was up to 93.6%. We
believe this to be a reasonable choice for our project. The dataset used was
much more complex than in the MLP and LeNet, so it can match up to the input
we have for it. The training time will not be a problem due to our ability to utilize
CUDA cores on a strong Nvidia GPU. This is another suitable configuration for
our image classification.

3.9.7 ResNet - “Ben Trevett’s Pytorch Image Classification”

The last architecture is labeled “ResNet”. This is another winner of the
ImageNet challenge, winning in 2015. This one takes after VGG in that it has
configurations that are noted to signify the number of layers and their sizes. This
architecture is seemingly much larger than the previously described ones. The
highest configuration within the notebook is ResNet152, which means it has 152
convolutional layers. The actual build of ResNet is very similar to that of VGG, a
chain of convolutional layers that are increasing in size, but many more layers in
comparison. The key distinguisher is the fact that the input of one layer and
output of the next layer are connected via residual connectors. This allows for
data to “skip” to other layers, which can prevent activation functions from
diminishing them. There is definitely more to research for this configuration, as
the residual connectors and sheer abundance of layers makes this intimidating.
The training done by Trevett is done with the CUB200 dataset, which is another
popular dataset used in classification training.

The method of calculating accuracy differed from the other architects
though. Instead of using the prediction accuracies as is, they are softened due to
the complexity of the images within the dataset. Travett describes the images
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being much harder to classify to even humans, so it would be more realistic to
curve the prediction results. He does this by comparing five predictions instead of
just one to the actual label. This obviously raises the accuracy quite a bit, from
79.5% to 95.5%. We don’t believe we would be employing this method of curving
the prediction results. If we were to deploy this method then we believe there
would be conflict with how the drone interacts with its environment. We may not
have to inflate the results anyways though, as our obstacle course will not consist
of objects with low color variety. Our objects will highly contrast with the
environment, made with solid primary colors. We would have to test it ourselves
because this implementation does not give a direct comparison to AlexNet nor
VGG due to the dataset and curved results.

3.8 Gazebo

Gazebo is the 3D open-source simulator previously described in the
relevant tech that was referenced. That team made use of it to simulate drone
swarms and experimented with machine learning collision-avoidance. Since our
project is not too far off from theirs, we believe it is advantageous to utilize it as
well. Gazebo will allow us to create our obstacle course in the simulated
environment and control nearly every variable possible. Testing data is much
more readily-accessible from a simulated environment than real sensor data. The
ability to repeat trials at any pace and without risk of causing harm to the drone
makes an invaluable testing component.

3.8.1 PX4 Support

Gazebo’s support for the PX4 control system simplifies the build and
testing process by orders of magnitudes[14]. There is no complicated process
that we have to produce to get a one-to-one representation of our drone in the
simulated environment. We just have to run it on a Linux system, utilize the
necessary plug-ins, and connect the two via MAVLink, which is a messaging
protocol.

3.9 PX4 Autopilot

PX4 Autopilot is the open source flight control system that can be applied
to the drone kit we are purchasing. We were fortunate to come across the
research study that utilized PX4 to control their automated drones. The system
also comes with a built-in simulator, but does not meet the creative needs that
Gazebo can provide us. The simulator, jMAVSIm may be used for initial
movement testing but nothing past that stage.

3.10 Mission Planner and Calibrations

Mission Planner is the software that is used for drone calibration and flight
planning and is crucial for successful flight. It contains multiple testing
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applications in which the user can fine-tune all flight components of the drone,
including the compass, electronic speed controllers, the motors, and the GPS
module.

Mission Planner 1.3.37 build 1.1.5917.13431 APM:Copter V3.3 (d6053245) = o x

(Guided Muda\:,m:a.:
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Figure 3.10.1: Mission Planner Data Interface

This software implements pre-arm checks as well which allows the drone
to be armed for flight given that all prerequisites are met. Here are a few
examples of messages that are displayed if the drone cannot be armed due to
not clearing pre-arm checks:

- No GPS Fix: The drone needs a valid satellite signal in order to be armed
- Throttle Failsafe: The RC controller is set to full throttle
- RC Failsafe: There is no transmitter detected

The calibrations are also required to arm the drone and include multiple
different fields. The compass is the most important as it gives the drone full
awareness of direction which is key to stable flight. The radio calibration, as
shown below, allows the user to fine tune minimum and maximum outputs for
throttle, pitch, yaw, and roll for more defined flight. The ESC calibration allows the
PixHawk module to determine how much power to provide to the motors and also
is the main source that allows the motors to spin.

3.11 Robot Operating System (ROS)

ROS is an open source API for automating vehicle control within the
Gazebo simulation environment. If we were to utilize it then there may be
complications with PX4 but PX4 provides a workaround within their User Guide.
ROS would assist in managing the drone’s data sources, which may in turn
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streamline the input for our CNN. The framework also runs in real-time so it
might save us trouble when analyzing our data.

3.12 Technology Comparison

The commercial drone technology industry continues to push its limits and
there are large companies doing extensive research including Dji, Autel Robotics,
Parrot, Walkera, Blade, Helimax, and many others. Focusing on the two largest
drone companies in the United States market, DJI and Parrot, which are both
renowned companys and the two first billion dollar drone companies. The table
below shows a comparison between the two drones models.

Table 1. Product Comparison

DIJI Mavic 2 Pro

Parrot Anafi

Photo Product

Flight time 31 Minutes 25 minutes

Flight Speed 20 m/s 15.3 m/s

Flight Distance 18 km 4 km

Weight 907 g 320¢g

Volume 6518.57 em’® 2730 cm’
Dimension 241 x 84 x 322 mm 175 x 65 x 240 mm
Price $ 1.729 (DIJI Store) $ 700 (Parrot store)
Video Recording 2160 x 30 fps 2160 x 30 fps
Main Camera 20 MP 21 MP

Field of View 77° 84°

Battery Power 3850 mAh 2700 mAh
External Memory 128 GB 16 GB

Has a serial shot mode
Can create panoramas in-camera
Obstacle detection

Product excellent Smaller product dimensions

Product price is lower

Source: versus.com

Figure 3.11.1: Comparison of two drones

As one can see in Figure 3.11.1, the DJI drone is the leading competitor in
drone technology with the highest flight time, flight speed and flight distance. Also
with higher battery power and a larger external memory availability. Although
video recording holds the same frame per second rate, the DJI model has the
ability to shoot photography in serial shot mode, create panoramic views and can
detect obstacles.

Obstacle detection is where the neural network software uses the camera
on the drone to identify objects in its view. This is commonly seen to the general
public by green box detection in videos. The machine learning software in DJI
technology research are doing current studies on developing a drone that is
controlled by human hand gestures. With this being said, the DJI model drone is
the strongest competitor in the commercial drone market and with that comes
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high end prices, where one will pay more than double for a DJI drone versus a
Parrot drone. The project is focused on Visual Navigation and reviewing the most
popular Vision Positioning System (VPS) drone on the commercial market. This
drives one back into DJI technology and introduces the DJI Phantom 4.

Looking back at the cost and performance, we want to relate to a product
tested that is low cost with generally good performance. In 2010, the Parrot
company started a project called the AR.Drone, which had from 5 to 12
engineering from Parrot with support from SYSNAV and academia MINES
ParisTech. SYSNAV provided deep technical support and MINES ParisTech
provided research and testing on navigation and control design. The AR.Drone
aims to produce a micro Unmanned Aerial Vehicle at low cost for indoor
navigation for the mass market of video gaming and home entertainment.

Figure 3.11.2: Augmented reality vision based drone control

The augmented reality drone design is primarily controlled by a remote
that still detects obstacles in its view for augmented gaming and cinema
experiences. This device has an integrated WIFI chip and bluetooth for the
purposes of a user-friendly graphical interface on Apple products such as the
iPhone, iPad and iTouch. This drone is currently available online and in retail
stores in selected countries at a price below $330 USD. The device is currently
available for sale on Amazon but with unavailability to be purchased in the United
States. This drone was developed and distributed to sell by French engineers in
France. After more research, it is seen in many online photos that although the
drone was intended to be used in-home and confined spaces only, the general
public still took the device outside for gameplay and this caused some
disturbances in governmental regulations. Hence, why it is also being
discontinued by the Parrot drone company for general public usage.
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(Discontinued by

Manufacturer)

Visit the Parrot Store
x 151 ratings

. Share ‘

| 7 answered questions

Product Packaging: Standard

Packaging
Brand Parrot
Color Orange/Blue

Item Weight 1 Pounds
Control Type Remote Control

Material interchangeable
hulls

Wireless Wi-Fi

Figure 3.11.3: Parrot drone on Amazon for sale in outside countries but
discontinued by manufacturer

3.13 Part Selection

The following section primarily serves as a way to showcase all of the key
components that the drone system will use in its operation. It shows the models
of the parts that the group decided on

K, 1T

Figure 3.13.1: F450 450 4 axis quadcopter frame kit for Pixhawk Flight
Controller), Propellers eight needed - four for usage and four for backup and
propeller guards

To battery

current
sensor

ESC4 | ESC 1

voltage
regulator 1

voltage
regulator 2

ESC3

motor connection pads

Figure 3.13.2: Electric speed controller for brushless motors and the power
distribution board
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Prmax 180 w Thrust 660 g
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Figure 3.13.3: Autopilot Pihawk PIX4 ARM Flight Controller, Raspberry Pi4 &

High Quality Camera(2), 3.7V 6000mAh Universal Lipo Battery, 4K 64G SD card

Brushless Motors(6), Vibration damper, GPS Module, fire proof case for to store
material for safety, FPV Video transmitter, pin space wires and gps mount

3.14 Part Comparison

3.14.1 Sensor Comparison

LiDAR Stereo Vision
2
Area Coverage 25 S ?1[-31 F; ;3 }(&kﬁear 0.20 m to 20 m approx.
Power Consumption 10W to 50 W 11Wto25 W
Operating No reflection good lighting condition with
Environment in open space texture rich environment
Processor Platform ARM v9 ARM FPGA

Cost upto 25,000 USD 500 to 800 USD
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Figure 3.14.1: LIDAR and Stereo Vision Comparison

Accuracy of GPS coordinates depends on the sensors. The assessment
of the GPS location of moving objects is a challenging task. The below graphic
displays the core differences between the LiDAR sensor system as well as basic
stereo vision.

For this project, even with a smaller floor area of approximately 50 square
feet to test the functions of the drone, area coverage / field of view for the sensor
is very important. The table shows that the LIDAR system offers a substantially
greater amount of coverage compared to stereo vision which covers less than
approximately twenty meters.

In terms of power consumption, both sensors produce similar voltage
output. As long as the drone’s breadboard battery has enough voltage to power
the sensor without any shorting or other issues, then either sensor will suffice in
this case.

For the operating environment, the drone shall only fly within the mesh
cage that is built in a well-lit room on campus. Therefore, the LIDAR would be
more sufficient in this case as there won'’t be any reflection from direct sunlight
since the testing environment is solely indoors.

Finally, the cost and processor platform are not necessarily significant for
this project since the drone is small in size and doesn’t require any highly
advanced technology in terms of processing, thus lessening cost overall.

Table 3.13.2: Camera Module Comparison

Spec Arduino Uno Raspberry Pi3 B
CPU Type 8-bit Microcontroller 64-bit Microprocessar
Operating System Mone Some flavor of Linux
Storage 32 kB flash Depends on size of 5D card
Memory 2kB 1GB RAM
Speed 16 MHz 1.2 GHz
GPU Mone Builtin
Networking MNone Ethernet, Wi-Fi, Bluetooth
Price 520-522 535
USB ports 1 4
Power consumption Canbe<0.25W Several watts

The camera is also a key component for the drone to clearly detect
objects, which is the main function of this project. The group selected the
Raspberry Pi module due to its compatibility with other parts, although similar to
the Arduino Uno module which is compared in the table above. The 64-bit feature
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allows for faster processing speeds which in turn may result in better quality
when viewing the drones perspective mid-flight.

The biggest takeaway between the two cameras is the clock speed. The
Arduino Uno only has a maximum clock speed of 16MHz, while the Raspberry Pi
has capabilities of up to 1.2 GHz, or 1200MHz, an increase of nearly 75x.
Although this comes with higher power consumption, this is not a very significant
issue for this project.

Finally, the cost between these two modules is rather similar, but with the
faster speeds and higher RAM, the Raspberry Pi is clearly the better option for
the drone.

3.15 Software Design Comparison

There were essentially two options given to us when we decided to take
on this project. The machine learning framework is an important part in not only
how the training is computed, but also brings in different coding libraries that train
differently. PyTorch and TensorFlow are the two machine learning frameworks
that we were given to choose from. The table below outlines some of the
characteristics of them.

Table 3.14.1: Comparison of Machine Learning Frameworks

Framework PyTorch TensorFlow
Founder Facebook Google
Dynamic - computational Static - computational
Method of Computation graphs are created when [graphs are statically defined
necessary when compiled
Distributed Training Built-in Manual SetUp

Stronger Comm unity Better Visualization of
Presence and is more

Pro Python-like, making it Tralnlng an.d Larger
Libraries

easier to learn

Little to No Visualization of Does NOT FEEL like
Con Data Training, can be more | Python, so it takes more
difficult to identify issues time to learn
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The table below is a comparison of potential activation functions that we
can implement for our convolutional neural network. Activation functions play an
integral part in determining a neural node’s output, which can heavily affect the
quality of predictions that are produced. Our choice is made through thorough
simulation testing and comparing real results. The final decision will most likely
be ReLU or Leaky ReLU based on their attributes in comparison to other
functions.

Additionally, the loss functions play a very important role in producing
much more accurate predictions within the convolutional neural network. Again,
our choice will stem from rigorous testing and then comparing the results of the
functions shown in the table. Cross-entropy will most likely be our choice
because of its pros shown below in Table 3.14.3. The few cons that this does
have can be easily worked around and overcome with some additional effort from
the team.

The table below is the comparison of open-source training model
packages that we researched. These are options that we were able to find and
they are the determining factor for how well our object detection model performs.
We can make alterations but the preset is important for us to get a foundation to
build upon.
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Table 3.14.2: Comparison of Activation Functions for CNN Configuration

I’;ﬁg‘é‘zg‘r’; ReLU Leaky ReLU Sigmoid Tanh
: _ g(z) = max(0.01z, g(z) = _
Equation | g(z) = max(0, z) 2) 1/(1+e(-2)) g(z) = tanh(z)
Similar to
Similar to ReLU sigmoid but
Lower threshold but lower Crushes input | centered at
Description | implemented at threshold is to coincide | zero for both
P P 5 product of 0.01 |  within the the x and
and z, rather range [0, 1] y-axis, so
than cut off at 0 range is [-1,
1]
Imlj)étr?]rgr?tati torch-NeuralNet [torch-NeuralNetw| torch-NeuralN [torch-NeuralN
P on work library ork library etwork library | etwork library
Attempts to
Gradient does whcé?;nl?{eerlistjlﬁa
not vanish asin | ,_. Y Average
. . fail, a neuron will Flattens :
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Table 3.14.3: Comparison of Loss Functions for CNN Configuration
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Table 3.14.4: Comparison of Training Model Packages
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4 Design Constraints and Standards

The creation of the drone has multiple constraints that the group must
work around in order for the project to be successful. This section contains lists
of the different types of challenges that a completed drone will face in order to
have a proper flight. These include the size of the system, the weight, and safety
concerns among others. Safety is a key factor when creating a drone, and
particularly so with an autonomous one. The drone should avoid making any
collisions with humans or other private property. This is one of the functions of
the object detection system.

Often, flying a drone in public areas may require several government
permits. The group must take these into consideration, and they are the primary
administrative restrictions that they have. The group is already aware that
permission is required to fly any drones on UCF’s main campus, which is where
the drone testing is likely to take place. Additionally, to prevent any issues with
the school, the group is planning to create an indoor testing environment inside
of a private laboratory on campus. They will acquire the permissions and access
codes and keys necessary to access the lab, and

Most of the other restrictions are due to the physical and technological
limitations of the system. These factors include things like the required size,
weight and thrust of the system. With any flying object, and especially a hovering
object, all of these must be balanced in perfect harmony. Otherwise, the entire
system risks catastrophic failure. An imbalance can easily lead to too much or
too little lift, resulting in the whole system crashing. Any accidents at significant
speeds and heights may completely destroy the flight systems as well as any
number of other component systems. It is for these reasons that these
constraints are considered by the group to be some of the most important in the
entire project. Above all else, these constraints will make all of the difference
between the success or the total failure during the final project and
presentations.

There are also certain environmental factors that can alter the
effectiveness of the system. It should be noted that the group will only require the
image recognition and flight systems to operate at their fullest capacity in a
controlled indoor environment. However, they still desired to think about how the
flight system would operate in an uncontrolled outside environment. Though
these are not essential requirements, the application of this constructed
technology would be widened exponentially if it could handle the basic outside
environment. These constraints could look like light to moderate wind speeds
and general atmospheric turbulence.

Beyond these environmental factors, there are also some health and
safety standards that are necessary to follow in order to prevent serious injuries.
The Federal Aviation Administration has put out universal standards that must be
followed in order to legally and safely fly a drone in any public area, regardless of
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whether it is being flown indoors or outdoors. These constraints create little
worrisome for this project due to the enclosed testing environment, but it is
important to go through them as needed.

This chapter will take a deep dive into the physical, environmental, and
administrative constraints and standards that they will need to address. The
constraints of the system will directly lead to the development of a great deal of
the defining features of the system. The group has learned how to address these
challenges that are inherent when creating an autonomous drone. Even though
they are confident that they have discovered nearly all of the major constraints
and standards of the project, the group believes that if there are any more of
these challenges that come up later on in the development process that they can
swiftly and effectively confront and handle them

4.1 Physical Constraints

The team also needed to consider the physical constraints of the system,
Given that a drone can be quite a sensitive system, there are many mass and
weight distribution requirements that the group must face to construct a
functioning drone. Considering the construction of the drone, the robot is
constructed with four legs (or arms) with the PCB board in the middle connecting
the four legs. The four legs will each have brushless motors attached to the top
plane (or y-plane in space) of each leg.

On the top of each motor, there is a set of two propellers. The propellers
are the mechanical aspect of the robot that catches the wind and allows
movement in space and time. The quadcopter has a set of two propellers, two
that connect clockwise and two that connect counterclockwise. These set of
propellers are a pair by legs, therefore one pair of legs is connected via one node
and set as the forward propellers and the other set of legs is connected via one
node and set as the backwards propellers. The propellers will move at a high
speed of anywhere between 8000rpm to 9000 rpm. The propellers are to be of
the highest constraint because at this high speed and the novelcy of the team
with robot building, it must be held to the utmost safety.
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Table 4.1: List of all of the basic project constraints

4.1.1 The system has a weight of less than 10 Ibs

4.1.2 The system has the correct permits to fly legally

414 The system must be able to remain stable during small gusts of wind

4.1.5 The system must follow the rules of the selected programming language(s)
used throughout the software

4.1.6 The system must contain parts that are within a reasonable budget

4.1.7 The system must avoid putting humans in harm's way

4.1.8 The system has elements to protect the propellers, and by proxy protect
people and objects around it from the propellers

Not alot of drone models are currently seen with propeller protector rings
for the safety of human interaction. There has been instances described in
research, where a human may be distracted in their research and not completely
aware of their surroundings and have collided with the drone causing impactful
injuries to the face that require immediate health care professional attention. For
this reason, we are to only test the drone in its appropriate testing zone but to
also put on propeller protector rings for the safety of all those within the lab of the
testing zone.

The testing zone details are described in depth later on in this research
paper. For visuals now, the testing zone is in an indoor area, on an elevated table
with mesh netting around the table being held up by piping. This standard testing
area is set up at a lab on the University campus, as promised from our original
sponsor and now confirmed by Dr. Reza. This standard testing area will ensure
safety as well as accurate testing zone since the zone will not be modified.

4.1.1 Propeller Safety Factor

The way our team will solve the propeller safety factor that will ensure
safety is have propeller protector rings. Propellers are the aerological part of the
robot that allows the drone to fly. The propellers are attached to the brushless



Group Three: Object Detection Drone 52

motors. There are four motors on the end of each leg of the drone with two
propellers attached to the end of the motor, this allows flight upwards,
downwards, forward and backwards. In order for the drone to fly forward, the
flight controller speeds up the designated corresponding brushless motors
which are attached to two out of the four legs of the drone that share the same
node. The two legs that are used for movement must be connected in series. The
two brushless motors that are attached to these corresponding legs move at a
faster rate of about ten times while the two back motors stay at a slower speed or
at the speed it was prior to forward / backwards / side command. This causes the
two front propellers to go faster, therefore propelling the drone in the direction in
space that was determined by the controller.

The propeller rings will circle around the propellers of each set on each
electronic motor. This will create a barrier between the propellers and any outside
objects. As explained above, the propellers must move at a high speed to take
the robot from off from the ground. Safety is one of the group’s greatest priorities.
A drone is quite a sensitive system, and can easily lose control if one is not
careful. With this in mind, the group decided that it is important to keep the speed
of the drone at a minimum. The team does not predict that our drone will
maintain a very high altitude during its testing. It is predicted that the drone
should only be about to fly about two to four feet above the testing table for a
maximum of 12 minutes.

4.1.2 Battery Constraints

In order to achieve the expected flight height while also achieving battery
life, the battery is another key component needed for extensive research for
reliability, durability and safety. Our team is looking to start with a battery that is
around 2300-2300 KV with a 3s battery voltage applied to it. This will cause the
motors attached to each leg of the drone to spin at about 28,980rpm. More
calculations and research within the area will need to be done and should be the
team's main focus moving forward.

The battery is the key component for reliability because each motor, the
vision system using the camera, the control system and the microcontroller of a
raspberry pi will all rely on its efficiency to provide the correct voltage to each
component for proper flight control and safety. The battery will also be the
component that is causing the most heat. These thermo waves do need to be
controlled in order to ensure that the robot does not set on fire neither does it
melt or burn any of the wires or components.

This aspect of the robot does require a project constraint of heat omission
and will require great attention to prevent fires. For safety, the team will purchase
a fire casing to enclose the battery chosen as well as a fireproof bag to place the
drone in to prevent any spread of the fire. The team should also be aware of the
closest fire extinguisher near the testing lab and have their devices in hand to call
on emergency if needed. To address some of these concerns, there should also
be at least two people in the testing lab at a time when performing testing.
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Now that we have gone through the two major safety concerns of the
robot and the constraint that is needed for the best safety measures. We would
like to go into a bit more detail of each component that makes up the quadcopter.
The first part of the robot that we will need to build is the frame. The frame is the
main body of the drone, where all the parts are mounted together. To keep
minimal weight, the drone is made from carbon fiber. The frame, as stated above,
will consist of four legs connected by a rectangular body center.

Table 4.2: Drone frame size comparison

Propeller blade size Drone frame Size Leg/arm thickness
2 inches 95mm 2.5mm

3 inches 130mm 3mm

4 inches 180mm 3mm

6 inches 250mm 4mm

On the end of each leg of the quadcopter there are brushless electric
motors. The motors are the powerhouses of the robot that give the quad copter
the thrust and propulsions needed to provide speed for the propellers attached.
To build the drone and ensure that the robot can be lifted from the ground, we
must take important account of the specs in the motor that we will use. When
choosing a type of motor and manufacturer we must look at the size of the motor.
The size is typically noted in a XXYY format, with the XX referring to the stator
diameter in millimeters and the YY referring to the height of the magnets inside of
the motor. The larger each of these numbers are, the higher the torque the motor
will produce. The larger the size of these, the larger the weight of the drone as
well. For this reason, our motors have a small diameter and small magnet size
which will result in a less heavy robot and slower robot, ensuring safety from the
constraints explained above.

These motors are connected to the main flight control system by electronic
speed controllers. The ESCs are the devices that will allow the Pihawk control
system to control and adjust the speed of the electric motors by raising and
lowering the voltage to the motor as required. This is what changes the speed of
the propeller causing movement, speed and flight direction. Its purpose is to vary
the electric motor’s speed, direction and also acts as a dynamic brake.
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When looking for a motor, we will look to find a specification table that
gives details on thrust with different props and amp drawing. In general, we will
follow a 10-1 thrust to weight gap ratio when building our drone.

Table 4.3: Size comparison of brushless motors with its corresponding
components

Propeller size | Stator Size Magnet Brushless ESCs
(diameter) Height Motor in KV

2 inches 11 03-06 4000-8000 6-12 A

3 inches 13-14 06-07 3000-4000 12-20 A

4 inches 13-22 04-07 2400-2900 20A

6 inches 20-23 06-08 2200-2800 30-40 A

4.1.3 Flight Controller (FC) Constraints

Now to get to the brain of the quadcopter, the flight controller. The flight
controller of the drone will take into account the angle of the drone and will
control the input to calculate how fast the motors should spin and send these
signals to the electronic speed controllers or ESCs. Flight controllers are built for
different softwares, and for our case we are using the Pixhawk flight controller
because it is easily integrated with a Rasperrypi4 and the pi module camera.
Software constraints for the flight controller are explained in the software section
below.

This flight controller will not be the cheapest nor the most cutting edge
development. The flight controller chosen is for novice drone builders that are
also performing engineering research such as the one we are performing, vision
navigation. For this reason, the flight controller has a good processor. The
microprocessor will work hard to keep the robot in the air while also processing
the visual input and enable decision making. With this, machine learning has to
be coded onto the chips to enable proper decision making. This is why we are
predicting the flight controller to be one of the most expensive components on
our drone. This will ensure proper safety and control of the aerial machine.

The flight controller and the electrical components mentioned above are
connected to a Power Distribution Board (PDB). The PDB will intake the battery
voltage provided and is used as a layout to set various points for the team to
connect up the electronics. The PD board will feature regulatory power switches
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to lower voltage to certain components. There are many things to consider when
choosing the appropriate PDB. Such as voltage requirements, connector
locations and the maximum current draw to each electronic device location. The
constraints determined for each of the requirements stated above will also be key
in reliability, efficiency and safety of the drone.

For the voltage requirements of the PDB board, it is important to consider
that the flight controller will require about 5V to run off and the camera can
require another 5-12V, this is a high voltage that cannot be connected directly to
the battery without causing a fire due to the constant high voltage transmission,
giving the essential constraint of needing a Power Distribution Board to connect
the devices too. The PDB will also need to contain voltage regulators or Battery
Eliminator Circuits to provide the power output to the designated port that is
needed. When planning the drone build, the team has to try to visualize where
we want to put the electrical devices and if the pads of the PDB are actually
where we want there.

4.1.4 Visual Constraints

Now moving along to the eyes of the drone, it’s visual system, which starts
with the input signals received from a camera that is attached to the drone. There
are two cameras attached to the drone, one facing the z axis of the drone and
one facing the x axis of the drone. This will allow the drone to see forwards and
below it. For our vision navigation drone test, we are requiring the drone to stop
at the vision obstruction of an obstacle and also find its landing target. This is the
reason why we choose to use two drones. One to detect obstacles, such as
balloons in its x axis view and another to find its proper landing target labeled on
the target below it. This vision navigation machine learning technique is
expanded more within the optics and software sections respectively.

When choosing a camera, it is important to consider the constraints on
sensor type, pixel resolution and latency, the built in camera features, the lens
and the video transmitter that is attached. For vision navigation drones, the
cameras usually have a CMOS or a CCD image sensor inside. CMOS cameras
are less expensive than CCD cameras but lack the ability to react quickly to
changes in light. This is important to take into account when choosing the
camera for our drone because any sudden change in light that causes a lack of
visibility can cause confusion within the drone flight controller system and cause
a crash. A CCD camera will give us the best result for a vision navigation drone,
which uses a Sony Super HAD Il sensor which is one of the best in the market
for vision navigation drones. On the topic of resolution, the higher the resolution,
the slower the latency so this is also a large topic to dive deeper in when looking
at the type of resolution we would like our vision navigation drone to have.

The group also wishes to create a testing environment for the drone. This
setup will let the group run the many tests required to train the Al. Understanding
what is needed to create a specific testing environment is essential to
understanding how the drone should fly. The constraints of the testing



Group Three: Object Detection Drone 56

environment are very important to understand when developing the system as
well as important for safety measures.

Table 4.4: The parts needed for the training zone that is set up in the lab:

441 Green Trable

442 Netting that will surround the testing environment, this will
ensure the safety of anyone in the room if the drone loses
control

444 Tubes to hold up netting. This will ensure the structural
integrity of the nets. Having nets move around as little as
possible reduces risk of drone colliding with them

4.4.5 Environment model. This will simulate an environment a
drone may find itself in. It helps train the Al to differentiate
between the target and the local environment

4.4.6 Block targets. These will act as the primary targets for the
drone to move around

4.4.7 String/rope to hang targets from the ceiling
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Table 4.5: The parts need to build the drone with the parts’ approximate weight:

441 Drone Frame 60g-140g

4.4.2 | Four Brushless Motors 25g each 100g total
4.4.3 Eight Propellers (four for backup) 17.3g each set of four
4.4.4 Propeller protector rings 129

4.4.5 | Four Electric Speed Controller 4-6g

446 | Power Distribution Board 25g

447 Flight Controller 20g

4.4.8 Battery 170g-270g

4.49 | Battery Charger 30g (will not be attached to drone)
4.4.10 | Battery Fire-proof case 409

4.4.11 | SD card and SD Reader 315g

4.4.12 [ Camera 734g

4.4.13 | RC Video transmitter 453g=1Ib (not attached to drone)
4.4.14 | Sensors 5.8g

4.4.15 | Wires 7.5g

4.4.16 | Raspberry Pi 4B 469

4.4.17 | Vibration Dampening Plate(3D printed) | unknown

4.4.18 | GPS and Compass Module 18g

4.4.19 | GPS mount 20g

4.4.20 | Screws 9.4g

4.4.21 | Screw driver N/A

4.4.22 | 940 nm LED 9g

4.4.23 | NIR Photodiode 9g

4.4.24 | LM358 Op Amp N/A
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4.2 Data Sheet Material

The data sheet below describes the specifications of the drone system as
well as the conditions necessary for successful testing. These measurements
include the specifications for the mesh cage testing environment as well as the
capabilities of the drone itself. Utilizing these parameters is important when it
comes to determining area coverage using the camera which can speed up
overall object detection. The table also describes the takeoff and idle altitude
while in the testing environment.

Table 4.6: Technical Specifications and operational conditions

Specification Value

Technical Specifications

Climb rate 2m/s

Cruising speed 3 m/s

Peak thrust 7.5 KG

Vehicle mass 2566 g

Recommended payload mass TBD

Maximum payload mass TBD

Dimensions 1.5m between opposite rotor shafts
Flight time 10-12 minutes

Operational Conditions

Flight radius 6 feet by 8 feet

Ceiling altitude 12 feet - ceiling of lab at campus

Take-off altitude 4 feet on table of testing area
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The team also wanted to organize all of the types of data that the drone
would be dealing with during the flight. Table 11.2 describes these settings in

detail and some of the ways the data is transmitted.

Table 4.7: Data required and settings used for experiment

Data type

Setting value

Flight area

48 Square Feet at 4’ Altitude

Width

6 feet

Length

8 feet

Camera Specifications

Pi module v4 camera - Sony IMX477R
stacked, back-illuminated sensor, 12.3
megapixels, 7.9 mm sensor diagonal,
1.55 ym x 1.55 ym pixel size

Output

RAW 12/10/8, COMP8

Back focus

Adjustable(12.6 mm - 22.4 mm)

Lans standards

C-mount, CS-mount (C-CS adapter
included)

IR cut filter Integrated
Ribbon cable length 200 mm
Tripod mount 1/4”-20

Distance Data From image detection
system

Too close or safe

Power consumption

10W

Processor Platform

ARM v9
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4.3 Health and Safety Constraints

For any type of drone, there are many regulations that must be followed to safely
fly in specific areas. Here are some basic standards that must be followed when
the drone is in operation, regardless of autonomous piloting or not:

e Fly at or below 400 feet

e Keep your drone within sight

e Don'tfly in restricted airspace

e Don't fly near other aircraft, especially near airports

e Don't fly over groups of people

e Don't fly over stadiums or sporting events

e Don't fly near emergency response efforts such as fires

e Don't fly under the influence

There is a future implementation of a remote ID for drones, but for this project
and during this timeframe, it is not needed. In terms of UCF requirements,
permission from the school is required to fly in any area on campus. Although the
drone shall be tested in a safe area within a lab or room, permission is still
necessary in order to build and conduct testing within the environment.

4.4 Test Environment Standards

Testing consists of three separate stages: image classification, simulation,
and real-world. We have structured our testing plan in this way to reduce more
costly faults that may occur within the real-world testing stage. This will also
prove to be the fastest way to get our desired results, as simulation gives us
infinitely more control over the way in which we train our drone. Following
successful simulation runs, the group is able to construct and practice running
the drone in a real life environment. Since the drone has much of its training
completed, the group is able to have far more confidence that the drone will
perform well. A greater level of performance in the beginning of real world testing
will result in fewer crash incidents. This prevents too much damage from
happening to the drone. Extensive damages that need repairs can easily drive up
the final cost of the system.

4.5 Image Classification

The first set of trials is based around training the system to identify objects
through the video obtained from its camera module. The convolutional neural
network is fed a large dataset full of a variety of images, trained using that data,
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and then testing can be conducted with recorded video of our obstacle course.
The input videos would be of consistent length with each being treated as a
separate test subject. We will attempt to reach high prediction rates on each of
the videos to ensure that we will not have any trouble moving forward with the
navigation portion of the testing.

4.6 Simulation

Initial testing is conducted within the Gazebo simulation environment. This
ensures consistent control over all variables. A significant portion of the testing is
done in the navigation training section. The environment will consist of a caged
room with 3 floating balloon objects of varying colors. We will run the simulation
with the drone at the same starting point and end point, feed it the desired route
until the system can navigate it with satisfactory results. Satisfactory results for
us means that the drone does not stray far off the optimal route with the least
distance traveled, does not collide with the obstacles, and does it in a timely
manner. If we are successful in this, we hope to advance past that stage and
move objects around, alter their colors, and even alter the start and end point.
Once we have succeeded in this portion, we can transition to testing in the real
obstacle course.

4.7 Real-World Testing

In order to effectively test the drone’s functions as well as develop a stable
learning mechanism for the drone to detect obstacles, an efficient test
environment is to be created. The test environment shall consist of the following:

- Mesh Cage
- Three Colored Obstacles

The mesh cage shall be constructed in order to meet safety requirements
within the testing space and to protect the conductors from failed tests if the
drone were to steer off in the wrong direction. The mesh is lightweight to prevent
any damage to the drone should the testing process go wrong.

The obstacles, which will also be used for the end-of-year demonstration,
will consist of three unique objects, potentially differing in color, which shall be
tied to the top of the cage and hung down for the drone to detect and fly to based
on the given commands. There may be obstacles placed on the ground for
low-altitude testing, if applicable.
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Figure 4.7.1: Schematic of the testing environment

4.8 Video Demonstration

For the demonstration, the test shall be recorded using the drone’s
camera (Raspberry Pi). The demonstration will consist of the instructions
provided in Section 17.0 and will also utilize the real-world test environment as
described in Section 16.3. Since the showcase will not allow the opportunity to
present a real-time demonstration, the video must ensure that all requirements
are met and that the drone completes a successful flight. At the time of
demonstration, the drone shall be completed in its entirety and provide the
observers a detailed perspective of the drone's full functionality.

4.9 Testing Instructions

4.9.1 Flight Test

In order to have a consistent testing method, the team wished to outline
the basic steps that the drone will typically take during its runtime for any test
trials. This basic series of steps will provide some of the foundation to the
instructions to the code. With a fundamental pattern hard coded into the system,
the group should be able to predict what the drone will do.
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Table 4.9.1: Basic flight testing process
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4.9.1 Power on the Drone

4.9.2 Enable Drone to Reach Required Altitude within the Mesh Cage
4.9.3 Turn on Camera

494 Provide Data to Test Object Detection via Software

4.9.5 Ensure that Drone Completes the Path Correctly

4.9.6 Return Drone to Initial Location

49.7 Return to Ground Level and Power off the Drone

4.10 Object Detection Test

The group also wished to have a basic system similar to the flight testing
process, but for image recognition testing. Table 17.2.1 defines an outline of the
steps that the object detection software will take after it is activated when the
drone is in flight. This consistent process may allow the group to determine
exactly where a bug occurs. From there, the group can efficiently and effectively
find areas of the code that must be fixed.

Table 4.10.1: Basic process of the object detection test

4.10.1 | Determine if Drone Detects Objects within the Software

4.10.2 | Ensure that Drone Flies to Correct Object in the Correct Order
4.10.3 | Confirm that the Entire Desired Flight Path is Detected Post-Flight
4.10.4 | Ensure that the Sensing System is Off when Drone is Turned Off
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5 Design

5.1 Reward Based Machine Learning

The software component of the project consists of three parts: training,
simulation, and real-world application. Training is done through the collective
effort of three softwares: PyTorch, Gazebo, and PX4. PyTorch is used to create
the convolutional neural network that handles the image classification during the
navigation through our pre-mapped course.

5.1.1 Training

We will first train the CNN with a large open-source data set inside of
PyTorch. Providing rewards whenever a successful state is reached while
training our CNN will hone its image classification skills up to whatever standard
we want to employ. After so many runs of configuring our CNN and achieving a
satisfactory image classification rate, we can then link our CNN to the simulation
portion.
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Figure 5.1.1: An Example Training Loop using PyTorch Lightning

For our CNN training model, we have ultimately decided on the YOLOv8
model. We have chosen this model because it covers exactly what we are
looking for in an object detection model. The model is credible and is easy to
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implement since there are plenty of open-source notebooks paired with packages
and articles going into detail about the functionality of the algorithm. The
Roboflow platform also lets us create our own annotated dataset. Any changes
we then make to the code can be reflected on since we then have a reference of
how the model should function. Everything before deployment is essentially done
with online resources, which saves us from losing any progress if something
were to corrupt. This also saves resources as we can train our model overnight
without having to monitor it if necessary. There are almost too many benefits for
utilizing this model and platform. YOLO is top of the line for real-time object
detection so this had to be our best choice going forward.

Training essentially ends there, but we do have the stretch goal of now
including navigation and collision-avoidance. Rewarding the drone based on how
fast it may move through a course, or when the drone takes a favorable path.
Training is where a majority of the coding is done, all of which is done in Python.
We may also alter the frame rate or resolution to test if we get higher recognition
rates or not. Depending on those results, we can really optimize our system to
maximize performance and accuracy. This would be a much simpler algorithm
that we would run many times more than our object detection, as it includes
much more free will with its access to a 3D space.

5.1.2 Simulation

First, we are experimenting with the control system of PX4 within the
simulation environment. Movement is basic, as altitude will not be a variable
within our project, but gaining an understanding of the physics environment and
how to track velocity/position components of the drone is extremely important.
Given that Gazebo and PX4 support each other, the resources they provide
within their Guides/APIs is essential to furthering our understanding of how the
drone reacts to its environment. Creating as close to a real-world environment
will also be key to have the drone transition out of the simulation as effectively as
possible. Improving our success.Monitoring every component of the simulated
drone gives more opportunities for “rewards” to then improve our predictions.
Cameras and sensors being simulated gives us a huge advantage as well, as
long as they are one-to-one representations of real-world field of views and
sensing capabilities. Otherwise, this may cause our predictions to be incorrect
and under/overestimate the abilities of the drone.

On the following page is Figure 5.1.2 that describes the general flow of a
general PX4 simulation protocol. This shows the logical progression of
communication that allows the system to train effectively
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Figure 5.1.2 Flowchart of a General PX4 Simulation Protocol
5.1.3 Real-World Application

Transitioning to real flight is the final step for our software development.
Ensuring that the resulting trained model stands up to its real-life counterpart is
the deciding factor for this project. With very minimum environmental effects to
take into consideration, the simulation should provide an authentic enough
experience. Mapping our obstacle course accurately will obviously result in a
more “prepared” state. Hardware capabilities may limit our ability to train on the
drone itself so accurate mapping is even more important to the process.

5.2 Raspberry PI Integration

We have decided on utilizing RaspberryPi 4 Model B to handle our
PyTorch trained model. We chose this version because of its out of box support
of PyTorch This makes the build process much smoother for us because it
alleviates a lot of the hassle of working with plugins or open source projects to
get fully-accessible PyTorch version onto our drone. With out of box support, and
Raspberry Pi camera module we selected, it also gives us the ability for
“real-time inferences.”

5.2.1 Post-Training

After training is completed, the model is then deployed on to the
Raspberry Pl. We then have onboard image processing and classification,
getting full use of our convolutional neural network. The setup for this is to first
install the 64-bit ARM Raspberry Pl OS onto the board computer; PyTorch will
only support 64-bit ARM so this is required. Once the OS is set up, our package
manager MiniConda and package installer Pip are installed. We use these to
then install the Raspberry Pi Docker tool which is utilized in tandem with a
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package we will install. All of our heavy impact packages are then installed,
which include: Roboflow, PyDrive, OpenCV-Python, RPi.GPIO. The model is
downloaded using a function from the Roboflow package. The Roboflow package
uses the Docker tool to connect to the Roboflow server in order to grab our
model.

5.3 Low-Level (Firmware) Programming

This type of programming is used for the drone’s firmware, which basically
coordinates the hardware aspects of the drone such as the motor(s), propellers,
ESC, battery, etc. The drone’s firmware allows the drone to have its basic
functionalities and operations. The firmware, for example, handles things like
determining the exact amount of power that should be delivered to the motors by
analyzing the information coming from the drone’s IMU (Inertial Measurement
Unit). This will allow the drone to perform a stable and level flight, the most basic
and yet most important function of any drone.

For this level of programming, C and C++ are mainly utilized. Additionally,
some drones may utilize a low-level machine language such as Assembly,
depending on the desired functionality. The Raspberry Pi module, which is used
for this drone, will utilize low-level programming in order to function.

Type of Example Description Example Instructions
Language Language
High-level Python, Visual Independent of hardware (portable). | payRate =7.38
Language Basic, Java, C++ Translated using either a compileror | Hours=37.5
interpreter. Salary = payRate * Hours

One statement translates into many
machine code instructions.

Assembly Translated using an assembler. LDA181
Language One statement translates into one ADD93
Low-level machine code instruction. STO185
Language Machine Code Executable binary code produced 10101000110101010100100101
either by a compiler, interpreter or 010101
assembler.

Figure 5.3.1: A table describing the implementations of low-level and high-level
programming

5.4 High-Level Programming

In this type of programming, more complex languages are used such as Python
and Java, to provide functionality to the desired applications, such as speed and
altitude, for the drone. Functions like controlling the drone to a certain altitude via
the Flight Controller (FC) or interpreting information from GPS so the drone can
move to a GPS waypoint, and even increasing/decreasing speed are handled by
high-level programming. API is used to link the code to the drone’s interface
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which will help with object detection as well as determining the flight instructions,
which shall be completely dependent on the color, shape, and size of the desired
object.

LEVELS OF AUTONOMY & DRONE APPLICATIONS

Application methods Appllcal:on methods Application methods Appl ication methods Application methods
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Figure 5.4.1: A table describing the types of autonomous drones and how
high-level programming has different functionalities for different purposes

5.5 Optical Design

5.5.1 Motivation and Methods

The team members wanted to prevent the drone from colliding with
objects as it flew around an area. The group decided that the color camera used
for the object acquisition alone was not enough to reliably detect whether
environmental objects were getting too close to the drone. They believed that this
would require too much computation. The images from the video would need to
be segmented, objects from all over the image would need to be isolated, and
then these objects would need to be analyzed over several frames to see how
the size and position of all of them change as the drone moves through space.
Only then can the drone do even more computations and identify a specific
object, or set of objects as an immediate threat.

The problems with processing the camera’s images for object avoidance
are twofold. For one, this lengthy process diverts computational resources away
from the image detection, which needs as much of the small computer’s
processing power as it could be given. Not only that, but in the time it would take
to process and analyze all of this data and determine if a specific object is a
threat, the drone may have already gone too far and collided with something. It
simply may not be fast enough to respond to a threat. When threats are present,
the drone must be able to respond as quickly as possible. Such a lapse in
decision time could result in the destruction of parts of the drone as it collides
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with the environment. The parts of the drone frame can become quite expensive.
Crashing the drone would drive up the final costs of the project considerably.
Therefore, damage to the drone must be avoided whenever possible. This is the
primary motivation for this optical detection system.

Analyzing the distance from an object using screenshots of an image
would require a lot of processing power, and the group wanted to avoid this
intensive approach. So, the plans for an independent optical detection system
that could determine if the drone was close to collision was devised. This could
drastically reduce the object detection processing requirement, and allow for
most of the processing power to be allocated toward the image recognition
software. This system would, in its simplest form, send a direct warning to the
computer that an object has become too close to the drone. This could then be
used to directly command the drone to stop its movement, and likely faster than
the image analyzing tool could do

A Light Detection and Ranging (LIDAR) system is a method of using
electromagnetic radiation, typically within wavelengths the near infrared range,
to detect the presence of nearby and far away objects. This range, usually
between 750 nm and 1500 nm, has several key advantages over other possible
wavelengths of light. Firstly, it is a range that the human eye cannot see. So, it
will not interfere directly with people’s daily life. Also, it can be done with less
powerful beams since other wavelengths of light can be filtered out. The
atmosphere is also quite transparent to these wavelengths of light, and they are
not used in other forms of communication. This means the beams will not
interfere with any communication systems such as radio, Wi-Fi, and bluetooth.

The final system design has several components that can sense the
environment immediately around the drone. The primary pr prevent damage to
the drone or others. Its object avoidance system has two primary optical
elements that will help it navigate its environment. An object detection sponsor
(or time of flight LIDAR scanner) that is used for object avoidance as well as a full
color camera that is used for the image recognition algorithm.

The minimum requirement for the group is to develop a system that is able
to detect whether the drone is becoming too close to an object. This object
detection sensor will use a near infrared LED and photodiode to detect reflected
light. Several of these sensors could be implemented around the drone to detect
dangerously close objects from several directions. It should be able to at least
detect a white object a foot and a half away. To give the drone some time to react
and stop its movement if necessary.
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*

Figure 5.5.1 An example of infrared sensor being used to avoid obstacles

If time and resources permit, and the group wishes to meet some of their
advanced goals, then they will develop a time-of-flight sensor, which can analyze
the exact distance an object is away from a specific section of the drone. If it
performs well enough, this would give the group more accurate information, and
could be used in tandem with the image recognition system to tell exactly how far
away the drone is from the target object.

Furthermore, if the group finds the ability to reach their stretch goals, they
will adapt this time of flight design into a full 360 degree lidar scanner. This
system will contain at least two time of flight sensors that spin in a circle, taking
data constantly. Data is taken from these sensors and creates a two dimensional
map of the area immediately around the drone. This data would be used to
recognize incoming objects and even determine the distance away from the
target the drone is. Theoretically, this could also be used to create a full map of
the environment.

Another goal of this design is to create a device that is cheaper than
commercially available alternatives. If the group decides to reach its stretch goal
of a full two dimensional LIDAR scanner, then it should have a competitive cost.
The cheapest 360 degree LIDAR scanners that are publicly available cost about
$100. So, one of the priorities of building a scanner is to make its total cost
significantly lower than this.

5.5.2 Object Detection Proximity Sensors

An object detection scanner is used to have the drone detect objects in
the drone’s immediate environment in order to avoid collisions. These systems
use an active imaging method of remote detection that emits light. Infrared light is
often chosen because humans cannot see it, and sensors can be made readily
available. They send out pulses of light that reflect off of the environment around
them. Some of these will naturally bounce off in many directions, but others will
return to the senor. As a beam spreads out it will naturally lose power, so the
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detector must be sensitive to the specific wavelength used by the emitter.This
power can be determined by analyzing the solid angle of the object one wishes to
detect relative to the sensor’s location. One can use this size to calculate the
expected power returning from a given reflection by analyzing how long it takes
the pulse pattern to return.

An important factor to consider when creating a LIDAR system is the
power of the beam and the sensitivity of the sensor. Since any beam sent out will
diverge, only a small fraction of the power sent out will hit the object one wants to
measure. The power will decrease as a function of distance, and the farther the
object away is, the less power. The rate of the power loss depends on the angle
of the beam divergence from the optical axis. Due to the Law of Reflection, the
light will reflect back at the same angle, and the calculations to get the power
returned is quite similar. These are all assuming an ideal scenario, and the
surface of the object is perfectly flat with the surface normal vector facing the
sensor. Despite this, these assumptions are still useful for getting a close
approximation to the power one should expect to see return from the sensor.
Once one has their desired range, they can adjust the power of the beam such
that their chosen sensor can detect it. They could also change the sensitivity of
the sensor, but this may be more difficult to do.

One must also consider the effects of the magnitude of beam divergence
on the resolution. If one wants to detect an object far away, they may need to
have a very small beam divergence. If an object were closer, a much wider
divergence could give a similar resolution.

Distance
Measurement

Vision
Cameras and
Software

Lateral
Resolution

Velocity
Measurement

Radar
Radio Detection
and Ranging

Object
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Darkness
Availability

LIDAR
Woather Light Detection

Measuremant and Ranging

Figure 5.5.2.1: A comparison graphic between LIDAR sensing, typical cameras
and radar/radio detection
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The team needed to decide between two types of LIDAR scanners: one
that can only see in one plane, or one that can create a full map of an
environment. After some thought, the team decided to go with the 360 degree flat
plane scanner. A LIiDAR device that is capable of a complete room scan can cost
thousands of dollars even for the cheapest models. This is far beyond what the
team considers to be within a reasonable budget. A flat plane scanner is far
cheaper, and may be just enough for the project.

The group had to consider the implications of having a horizontal only
scanner. Since the chosen LIDAR scanner can only measure in a plane that is
parallel to the drone, the team will supplement the blindness in the vertical
direction with a simple rangefinder or an altimeter to assess the distance from the
ground at any time.

Furthermore, since a drone will naturally tilt away from the horizontal plane
in order to move around, the flat plane LiDAR system will need to be on a
gyroscope to ensure it is always level with the ground. The height measurement
tool could also be integrated into this design.

P, returned

Prelfected

ol

Light
Source/Sensor

Figure 5.5.2.2: A basic diagram of light being emitted from a device, the light
reflecting off of the object, and returning to the sensor.

The power reaching the object is a function of the initial power (Pi), the
relative size of the object, reflection coefficient(R), and the distance. The power
that the object receives is determined by the beam divergence (8) and the angle
that the object takes up in the sensors field of view ().

Solid angle of object 2n(1-cos(d,)) - p 1—cos(¢,) (551)

object 7 initial Solid angle of beam - i 2m(1l—cos(0)) i 1—cos(©)
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The power reflected off of the object is found by multiplying this power by the
fresnel reflection coefficient of a material.

reflected =R Pobject (5.5.2)
And finally we can approximate the final receive power by using a similar
equation to Eq. 5.5.1

1—cos(¢.)
=P — (5.5.3)

received reflected " 1—cos(®)

Combining these together give a general expression for the approximate power
reaching the
1—cos(¢ 1—cos(¢.)
=P @) @ (5.5.4)

received initial 1—cos(0) 1—cos(0)

It is important to note that the variables ¢, and ¢, are both functions of the
distance between the sensor and the object (d) and the respective sizes of each
(ry and ry)

cl)1 = arctan(%)and (1)2 = arctan(%) (5.5.5)

From this, a model object detection system was created using a breadboard

As seen in the Breadboard Testing section, this system is made up of a
940 nm LED and NIR photodiode, and a variable resistor. By increasing the
resistance using this piece, the sensitivity of the sensor could be changed. This
means that the distance at which an object could be detected can be easily
changed by varying this resistance. The example mentioned is able to reliably
detect whether there is an object that is 30 cm away or closer.

For the midterm demonstration, a simple object detection system was
created using these outlined principles. A simplified diagram of the completed
setup is shown in Figure 5.5.2. It has a simple setup where a near infrared LED
(wavelength of 940 nm) is shined onto a surface, and the amplitude of the
reflection determines whether the system will detect an object or not.
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Figure 5.5.2: LED and Receivers reacting to light reflection

5.5.3 Time of Flight Sensors

Continuous wave time-of-flight sensors have several benefits over the
simple object detection sensors that have been described previously. They
measure the time (or phase) difference of transmitted and received signals rather
than rely on its brightness. This allows them to more accurately detect objects
that are not perfect reflectors. These devices can measure exact distances from
the edges of the drone. This more accurate information would be used by the
drone to more effectively detect nearby objects and react accordingly

By analyzing the direction the beams were sent out at, the distortion of the
signal, and the timing of the pulses, the device is able to determine exactly how
far away a given point in the environment is from the sensor. The two most basic
metrics one must consider when searching for such devices are the range and
resolution. There are several important factors that influence these
characteristics: the power of the beam, the beam divergence, the desired range
of the device, and the sensitivity of the sensor.

If the team were to mature this technology, then a system could be
established such that it can be mounted on a rotating component. Data is
collected continuously, and a two dimensional map of the area immediately
around the system would then be constructed for the drone to use for obstacle
avoidance. This stretch goal is not necessary for success, but it is something the
team could benefit from greatly. It would allow for very fast responses to objects
coming from any direction.
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5.5.3.1 Direct Time of Flight

Direct time of flight sensors operate on a rather simple principle. They
send out a pulse (or series of pulses) of light, and record the time it takes to
reach the object, reflect, and return to the sensor. Often, near infrared light
(between 900 nm and 1000 nm) that the atmosphere is transparent to is used in
these sensors for maximum transmitting distance.

The speed of light in air is approximately three hundred thousand
kilometers per second. It would take a pulse of light only 3 nanoseconds (3 x 10°
seconds) to travel one meter. So, naturally, this direct time of flight process
requires an extraordinarily fast driving circuit and signal detector. Most affordable
components cannot easily be manipulated to modulate this fast. Given the nature
of a direct time of flight circuit, there would be a larger minimum detection range
due to the limitations of the technology available. The team could only acquire
components that are rated for a certain speed, so this would be the limiting factor
in the development of such a circuit.

The drone must be able to detect nearby objects, and the components
that could be acquired easily may only be able to detect objects that are farther
away. Given that the purpose of this design is to create a detection system of
nearby objects, the ability to only see far away objects is not very useful to the
team. With all of this in mind, the group wanted to explore a different method of
distance detection where the transmitted and received signals can be measured
with a more reasonable driving circuit before making a final decision.

5.5.3.2 Indirect Time of Flight

Indirect time of flight sensing is a slightly more sophisticated method of
distance detection. This method sends out a periodic signal, and the period of the
signal is on the order of nanoseconds. This signal travels outward and reflects
back to the sensor. The sensor will pick up the reflected signal. By comparing the
incoming signal directly with the outgoing signal, the device would be able to
measure the difference in phase between the incoming and outgoing signal. The
difference in phase is directly related to the distance that the pulse has traveled.
Figure 5.5.3 shows that with the square wave pulses being generated by the
modulating LED, there is a time delay in the received signal from the sent signal.
This will result in a certain phase difference between the two beams. A reliable
method to measure this phase difference must be created. The goal of the
design is to correlate this measured phase difference with the time the light had
spent traveling back and forth. Once this is quantified, it can then be directly
correlated with the distance the light has traveled since. The speed of light is
always constant (in standard temperature and pressure)
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Figure 5.5.3: The time delay between the sent and received signals

Equation 5.5.6 describes the distance to the object using the relative

phase difference. The 1/2 term is there since ;—j} is the total distance traveled,

and half of that would be the distance to the object being examined. In Figure
5.5.2, once can see that

d = 5*5% (5.5.6)
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Figure 5.5.4: Simple diagram of electrical circuit for the indirect time of flight
sensor

As seen in Figure 5.5.3, two switches are modulated with opposite
amplitudes. One switch is modulated with a signal that is at the same rate and
timing as the transmission signal, and the other is modulated at the same
frequency, but with a 180 degree phase difference, effectively flipping the
amplitude. So, whenever one switch is open, the other switch is closed. One
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switch is always closed, so charge is being depleted from one capacitor at a time
whenever light is present on the photodiode. If light is shining on the system,
then current will flow through one of the capacitors, depleting some of its charge.
After one period, the total phase difference of the wave is proportional to the
charges depleted in both of the capacitors, as seen in Equation 5.5.7.

Phase Difference

b

N Emm—

Transmitted Signal

Tim% ()

Received Signal

7.

Detector B
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Figure 5.5.5: Plots showing how the received signal will always overlap and drain
one of the capacitors

Figure 56.5.5 demonstrates that for a signal that is not perfectly in phase,
the time that the incoming light overlaps with either capacitor is different.
Therefore, the charge in both capacitors at the end of the measurement period is
different. The difference in phase between the input and output signals is
proportional to the charge (voltage) in the two capacitors and the reset voltage
(V4a) Of the system. Therefore, the phase can be easily calculated from the
voltage measurements of the two capacitors.

T elay _ Vdark_ VB
q) - 7(follv B Vi =V, =V (557)
Combining Equation 5.5.6 and Equation 5.5.7, we can then accurately
calculate the distance to a given object from the total phase shift of the reflected
light. This expression, Equation **.**.8, would then be used by the program to

calculate the distance to the nearest object to the drone.

_ L 4 Vdark_VB
d = 2 * 2nf * w, —W,=V) (5.5.8)
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It should be noted that the distance equation is a ratio of the two voltages
in the capacitors. The amplitude of the signal does not really matter in the final
calculation. This means that the brightness of the reflected light is not a factor in
the measurements. As long as the light reflecting is bright enough to trigger the
detector, the phase measurement is accurate. This was a notable flaw with the
more simple object detection system. The indirect time of flight sensor will give
the same distance reading no matter what the absorption of the object is. This
makes the system far more versatile than before. This versatility is why the team
wishes to study this technology so extensively. Accurate and consistent distance
measurements would be very helpful for this detection system.

5.5.3.3 Phase Overlap

The transmitted signals being used are periodic, meaning they repeat in a
regular pattern. One may notice that after a certain distance away, the phase
shift of the signal becomes 360 degrees (or 21 radians) and the signal
completely overlaps. This phenomenon is called phase wrapping since the phase
has completed a full period shift and has ‘wrapped around’ to the next period.
This is the main limitation of the indirect time of flight system for distance
detection. After this point is reached, the actual distance away the object is from
the sensor becomes unclear, since the same phase shift This maximum range of
clear measurements is called the unambiguous range.

The unambiguous range is based on the frequency of the modulation
signal. This maximum range is shown in Equation 5.5.9. As one can see, the
higher the frequency, the shorter this range becomes. Although, a higher
frequency also means that the axial resolution of the image is higher. These two
properties must be well balanced when designing a system.

Actual Distance

Possible Positions
Measured Distance P Y

Unambiguous Range
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Figure 5.5.6: lllustration of consequences of unambiguous range from phase
wrapping

Unambiguous range = d = — (5.5.9)

As an example, sensors like the MLX75027 can support a frequency
range of up to 100 MHZ, which gives an operating range of about 1.5 m. The
modulation frequency also affects the minimum operable range of the sensor. In
general, a higher frequency will allow for a higher resolution, but a closer
operating distance. This unambiguous range must be accounted for, and labeled
accordingly during analysis. The code generated should make it clear when a
measurement is out of range, and ensure that no unambiguous measurements
are used by the drone’s navigation system.

5.5.3.4 Multiple Phase Approach

One method to accommodate for the unambiguous range of the system is
to use several modulation frequencies in tandem for the transmission signal. This
maximum measurable distance is then found by the greatest common
denominator among the several frequencies (Whyte, 2020). This greatest
common denominator is now the effective frequency of the system. As
demonstrated earlier, the smaller frequency will result in a longer effective range,
giving the system a more complete scanning range.

5.5.3.5 Background Noise Correction

Even though the near infrared wavelength that was chosen is meant to be
less abundant as background noise, there is still some in the environment,
particularly outside where the primary source of background infrared radiation is
the Sun. This would naturally result in some inaccuracy in the measurements.
Stray infrared light from the sun would be detected by the system’s sensors. This
drains the capacitors prematurely and it will directly result in incorrect distance
calculations.This would be part of the stretch goals for the group. Developing a
system to account for any background noise from the environment is necessary
for the most precise measurements.

5.5.4 Driving Circuitry

5.5.4.1 LED vs Laser Diodes

Whether the chosen optical system relies on direct time of flight or indirect
time of flight, the system will require a very fast driving circuit for the transmissive
optical element. This has been one aspect of concern for the team as they strive
to create a proper time of flight sensor as an improvement to the simple object
detection. These time of flight systems require very high modulation frequencies
in order to function properly. In some cases, an LED may not be fast enough, and
the team may need to switch to using a laser, which can be modulated far faster,
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and there are a multitude of ways to complete this task that this section will
examine.

The group had to determine whether to use a light emitting diode (LED) or
a laser diode. There are certain benefits to each. LED’s are definitely far cheaper,
and can be easily replaced if broken. They can get reasonably bright, but their
range is quite short compared to a typical laser.

Alternatively, laser diodes can be used. Laser diodes have the advantage
of being able to create focused signals that travel farther distances. However, in
some cases, the spot size may be so small after traveling so far, that the
returning light may need separate optics to be refocused onto a given sensor.
This may require additional testing. For now, the team has acquired a laser that
has the ability to change its spot size.
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Figure 5.5.4.1: A Diode Laser Stack in terms of Current and Wattage

A laser diode functions similarly to an LED, but with a few key differences.
In order to lase, the diode needs three things: a gain medium, a constant
pumping mechanism, and a set of semi-transparent mirrors to cause oscillation
of the light. A gain medium is necessary in order for a signal to be absorbed and
emitted. In a laser diode, the cleaved facets of the double heterojunction
structure act as mirrors due to Fresnel reflections. This reflectivity causes the
diode to become a Fabry Perot cavity, and light can oscillate back and forth
within the diode.



Group Three: Object Detection Drone 81

Figure 5.5.7: A Fabry Perot resonator

As seen in Figure 5.57, one of the primary features of this type of cavity is
that only certain wavelengths of light can exist within it. This spacing, as defined
in Equation 5.5.10 is called the free spectral range, and it is defined by the speed
of light (c), the refractive index of the medium (n), and the cavity length (L). With
any Fabry Perot resonator, only the wavelengths that can exist in a standing
wave can stay within the cavity. These wavelengths exist over a wide range, but
the spacing between them is always periodic.

A = < (5.5.10)

FSR 2nL

It is only these wavelengths that are able to lase in the cavity. The gain
medium that is chosen has an explicit spectrum in which light can experience
gain. Figure 5.5.8 shows this spectrum combined with a typical gain spectrum of
a gain medium. When these two spectra are combined it will show the specific
wavelengths that are able to lase. One of these, called the central wavelength,
comes more abundant and overtakes the otters as it begins to stimulate other
electrons, and only a single wavelength will last.
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Figure 5.5.8: The gain spectrum overlapping with the Fabry Perot spectrum, and
the relative power of each mode.

5.5.4.2 Laser Modulation

Figure 5.5.9 shows the simplified version of an I-P curve of a typical laser
diode. As one can see, the diode will operate in what is called the “LED region.”
Here, there is some spontaneous emission, and the current in the material
causes some photons to be released. However, after a certain threshold current,
population inversion is reached, and stimulated emission occurs. It is this region,
the “lasing region” where the laser diode should be operating. It is this area of the
curve that is also the most efficient, and where the laser will experience its
maximum power output possible for the diode. While the actual line in practice
follows an exponential function, the figures in this report use a linear
approximation to help facilitate understanding. These figures have been shown to
be good estimates of the true behavior of a laser
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Figure 5.5.9: I-P Curve of a laser diode

In this lasing region, the metric known as the slope efficiency is quite high.
The slope efficiency can be simply defined by Equation 5.5.11:

___Change in Power __dp
n = Change in Current ~ dlI (5511)

This high slope efficiency means that small swings in the input current in
the lasing region can create very large swings in the laser’s output. This can be
used to amplify small signals. For instance, if one were to send a relatively small
amplitude electrical modulation current signal into the laser diode, the laser
would amplify this into a higher amplitude signal. This amplification would allow
the system to send out a higher power pulse, which has a greater chance of
being reflected back in significant quantities to be measured by the detectors.
This would be one of the primary benefits of using a laser diode instead of an
LED in the object detection system.

5.5.4.3 Direct Modulation

Direct modulation of a laser diode is the process of creating a varying
output signal by changing the input of the laser diode directly. There are several
different methods to do this, and each has their own benefits and drawbacks.
The three primary methods that are examined here are as follows: small signal
direct modulation, large signal direct modulation, and pulse code direct
modulation.

The primary metrics that each are judged by are influenced by their
theoretical driving speed, the effects of relaxation oscillation, extinction ratio, and
power consumption. These few factors will give the best outlook for a possible
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modulation system. Balancing them out will ultimately give the best quality signal
to use for the time of flight driving circuit.

The driving speed is a measure of the method’s ability to switch on and
off, and it can be influenced by several factors like the time electrons spend in
the excited state in the gain medium before being stimulated and releasing a
photon. This is largely inherent to a laser diode, so selecting a diode with a
shorter electron lifetime would be the most ideal.

The relaxation oscillation is an effect that occurs when a laser is turned on.
A buildup of charge carriers occurs just before a cavity can lase, and the gain
medium is being pumped, and whenever the threshold is reached, there is a
short period where the peak output power is quite high before the system relaxes
and an equilibrium state of the system is reached. This time frame before a
signal relaxes can drastically limit the driving speed of the circuit because the
signal will not be able to repeat until it is finished.This relaxation oscillation is

demonstrated in Figure 5.5.10.
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Figure 5.5.10: Diagram of relaxation oscillation of a laser

The extinction ratio is an important metric for the system because it is a
measure of the ability to differentiate different parts of the signal.The higher this
ratio is, then the more likely a detection system is able to tell the difference
between the “highs” of the signal and the “lows” of the signal. To put it in another
way, if the “on” state and the “off’ state voltages are very close to one another,
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then it is very difficult for the detector to differentiate between the two. If this
extinction ratio is very large, and there is a big difference between the on and off
states, then one can easily tell how the signal is structured.

The final measurement of interest is the total power consumption. Since
the modulating current is not necessarily above zero for every configuration, the
average power of each will differ slightly. In the interest of using as few power
resources a s possible, the group wanted to measure this characteristic. The
drone has self-contained batteries that the entire system will most likely draw
from. So, the method that uses the least power is of interest.
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Figure 5.5.11: Small signal direct modulation of a laser diode

With all of this in mind, the first method of direct modulation can be
discussed. Small signal modulation is the method where the current modulates
between two levels that are well above the threshold. The basic current and
power behaviors of this method are shown in Figure 5.5.11 The difference
between these two currents is not very large. Unfortunately, this means that the
extinction ratio is rather poor, so it would be quite difficult to read the signal. Also,
the power consumption is relatively large, since the average current is so high
relative to the other methods.
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Figure 5.5.12: Large signal direct modulation of a laser diode

The next method is large signal direct modulation. This method, as
demonstrated in Figure 5.5.12, modulates the current of the laser diode from 0 to
just above the threshold. This method results in a very high extinction ratio. The
output power will modulate between 0 and another maximum. Naturally, this large
difference makes any signal sent this way can be more easily decoded, with
environmental noise affecting it less when compared to some of the other other
methods. The average power consumption is relatively low since it switches
between the lowest current of 0 and a maximum current that is only slightly
higher than it needs to be for lasing. So, it will draw the least amount of power
compared to the other methods. However, this method also has a significant
problem when it comes to relaxation oscillations. The constant switching of the
laser on and off means that the modulation rate is heavily determined by the
relaxation oscillation of the diode.
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Figure 5.5.13: Pulse code direct modulation of a laser diode

Figure 5.5.13 demonstrates pulse code modulation. In this method, the
bottom, or zero power level, is set at the threshold current, and it is modulated to
a level significantly higher. The current is always within the lasing region, and it
only grazes the edge of the LED region. This is a decent middle ground between
the other methods mentioned so far. There is some slight concern with a
relaxation oscillation, but not close to the level of large signal modulation. Since
the laser is never technically off at any given moment.The power consumption is
alright, with the average current level that is typically below that of the small
signal method, but a bit higher than that of the large signal method. The
extinction ratio from this modulation is decent, but not amazing. It is not as poor
as small signal modulation, but certainly not as good as large signal modulation.
With all of these factors in mind, this may be the best option for modulation of a
laser diode in this particular system.

5.5.4 External Modulation

Another alternative method of modulating the transmission signal is
through a process of external modulation. This method prevents the signal from.
It also allows for higher driving currents. As shown in Figure 5.5.13, a continuous
current is fed into the laser diode, which creates a constant output power. Then,
this constant output power is then modulated separately in a device called an
electro-optic modulator. There are several types of these devices that achieve
this goal with different methods, but they all achieve the same goal. They take a
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continuous light signal, and then alter it such that it has the same modulation as
a particular input electrical signal.
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Figure 5.5.14: Simple external modulation setup

This type of modulation requires a type of interferometer, a Mach-Zehnder
interferometer. The phase difference (¢) between the waves in both paths in a
Mach-Zehnder interferometer with the path length (L) and laser wavelength (1) is
estimated by Equation 5.5.11

2mnl
¢ = = (5.5.11)

In order to change the phase difference, one of the variables present on
the right hand side of the equation must be manipulated. There are three
possible characteristics of the system that can be varied: the length of the
interferometer, the wavelength, and the refractive index. Naturally, the
wavelength cannot be changed. It must remain a constant value throughout the
system, or else the signal quality, outgoing power, and measured power may all
be compromised. On the other hand, the path length of the system is not able to
be changed in the interferometer setup directly without an entire system of
moving parts. This is rather impractical, especially on the small scales that are
required by the overall LIDAR system. Therefore, the variable that must be
modulated is the refractive index. This is possible with an electro-optic modulator.
These devices make use of piezo materials (not dissimilar to those that may be
found in a microphone or speaker system) whose size and refractive index can
be changed extremely rapidly. As an electrical signal is sent across these
devices, the index will change, and then the input beam will experience a delay
relative to a second beam that is passed through a second arm of the
interferometer that is left unchanged. Using an electro-optic material whose
refractive index can be changed with a voltage could allow for this setup to
induce a phase shift. The resulting phase difference between the waves will
cause an interference pattern. This patterned light will then become the outgoing
signal that can be reflected back to the sensor and interpreted. This method can
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be driven quite fast, and it prevents a phenomenon called frequency chirp, where
the constant switching of a laser on and off causes a buildup of charge carriers in
the laser diode. This causes sudden releases of energy that are significantly
higher than those that are present throughout the continuous wave state of the
laser. This will ultimately lead to some slight shifting in the wavelength of the
laser. In some cases, this may not be too big of a problem, and the team took
these effects into great consideration when deciding which method of laser
modulation that they wanted to use.

After thorough consideration, the team decided that external modulation,
while it is very efficient and can prevent frequency chirp, is not a good option for
this. The optics to make such a setup too large and are quite sensitive.
Additionally, after doing further research, the team decided that due to the often
extreme prices for consumer electro-optic modulators, this external modulation
method was not cost effective enough to justify using it in the final system

With all of this in mind a theoretical laser setup could have the layout
shown in Figure 5.5.15. This laser rangefinder would use direct time of flight, and
it would continually send out light pulses at a consistent rate. These would then
reflect back toward This setup includes a lens in order to focus the incoming
reflected laser light onto a single IR sensor. This would allow for fewer of these
photodiodes required for the system.

Test Object

- :

IR Reciever ( r\jJ\—fL

The lens focuses the light onto the
IR receiver, so fewer photodiodes
need to be used d

Figure 5.5.15: Potential setup for a laser rangefinder

Ideally, this laser ranging system would be implemented into a full 360
degree LiDAR scanner. One or two of these rangefinders would be mounted onto
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a rotating stage, the distance would be calculated constantly as the sensors
rotated. This would lead to the system creating a continuous circle of distances
around the drone at all times. The circle of points with relative distance
information is called the ‘point cloud’ of the LIDAR system. Such a setup is
shown in Figure 5.5.16.

Laser Rangefinder
Some light is transmitted far
enough that no return signal is
detected

Some light hits a nearby object and
comes back for time of flight to be
calculated

Figure 5.5.16: Potential setup for a 360 degree LIDAR system
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Figure 5.5.17: Nearby object creating a bump in the point cloud

Figure 5.5.17 shows that if there are no objects in the immediate area of
the drone, then the values of the point cloud will automatically default to the
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maximum measurable distance. So, if there are no objects at all, then a perfect
circle with a radius of the maximum measurement distance is made around the
drone. However, if an object is placed within a detectable range, then the outline
of that object will appear as an interruption of the point cloud. This creates the
final two dimensional map of the local area. Group members have speculated
that thus information about the environment could do more than provide a
warning for incoming objects. This could even be used to improve the image
detection and navigation algorithm. If the system had a long enough range, and
the software was able to correctly correlate objects in the point cloud with
detected objects of interest in the camera, then the whole system could tell
exactly how far away the target object is, enabling many other subsystems, like
an estimated completion time. Additionally, if the drone had the ability to map an
entire area, then it could feasibly be able to create a path that led to both the
fastest completion time as well as the safest path, avoiding all obstacles with
ease. All of these potential benefits allow the drone to make better decisions on
how to navigate its environment. It is for these reasons that the group is heavily
invested into the idea of making this LIDAR scanner a reality. It would provide
numerous benefits that could dramatically improve the efficiency of the entire
system.

This subsystem would likely need to be mounted on some kind of
stabilization device. As a drone moves, it will naturally tilt in any given direction.
This would naturally change the angle at which the distances are found. The
largest issue with this is that the scanner would then be measuring off of the axis
we want. This could even be so extreme that the scanner would completely miss
some possibly hazardous objects next to the drone. To prevent this from causing
significant errors, the system must be able to compensate for this. Perhaps a
type of gyroscope system could be used, or maybe even a series of servos.
Since the creation of a full LIDAR system seems very likely at this point in
development, the team has chosen to put time aside for further investigation of
solutions to these issues.

The primary goal of the combination of all of these systems is to create a
two dimensional LIiDAR scanner that is cheaper than the nearest commercial
alternative. A similar system to the one shown in Figure **.16 will typically cost a
consumer around $100 or more. Given what the team has been able to calculate
for the electronic components and shell of the design (that would likely be 3D
printed) they are confident that they can create a device that is well below that
cost. If further tests are done to mature the rangefinding technology, the team
hopes that they can accomplish this stretch goal by the time all of the systems
must be integrated together

5.5.5 Final Circuitry

The final set of distance detection methods involved two primary systems
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Figure 5.5.18: Block diagram of driving circuitry for time of flight circuit

The time of flight circuit that was developed contains several primary
elements. Since light travels very fast, taking a nanosecond to travel a foot,
analyzing time of flight with a digital signal directly would require an incredibly
fast processor. Instead, this circuit calculates the time of flight using analog
signals. It starts by amplifying both the sent and received signals, ensuring they
both have the same amplitude. Then, they are passed through a set of Schmitt
Trigger circuits. This ensures that both of the waves are square so they can be
more easily compared. Then, the two signals are compared using an exclusive
OR gate. This will result in a series of pulses with the same period as the sent
signal. The width of this signal is the time of flight. Since this cannot be analyzed
with our microcontroller, this pulse train is then averaged using a low pass filter
circuit . This gives a single DC voltage signal. The higher the DC value, the
farther away the pulse. By inputting this signal into one of the Raspberry Pi Pico’s
analog to digital converters, we can calculate the distance to any given object
that the laser and photodiode array is pointing towards.

5.5.6 Camera

A full color camera is used as the eyes of the system. The drone will take
visual data from this and use it to detect specific objects that the voice
commands tell it to navigate around.The primary considerations for this device is
the resolution and size. There are many reasonably sized and priced options for
a color camera online that would work with the system. The resolution needs to
be high enough to detect objects at a certain distance away, but it also must be
low enough to be able to store and analyze the images efficiently. The onboard
computer has a limit on processing power, and in order to navigate efficiently, it
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needs to be able to process both the commands and the images. If the resolution
of the camera is too high, then it may overload the system, causing the
processing to slow down and increasing completion time. With all of this in mind,
a standard high definition 720p or 1080p camera would be used, depending on
the graphical processing capability of the chosen algorithm and the capabilities of
the chosen microprocessor. We will be using 480p though, in hopes of saving on
performance.

Figure 5.5.19: Photo of a Raspberry Pi Camera Module

The camera must also be compatible with the team’s chosen processing
unit. Often, small sensors can only be used easily with certain processors. There
is a limited number of usable USB ports available on the unit, so it is
advantageous to choose a unit that is able to connect directly with the
microcontroller.

At least two of these cameras must be in use simultaneously, since the
team needs the drone to have as wide of a field of view as possible. Only having
a single camera may be limiting, and if it cannot see an object from one side, it
may be required to rotate. This would call for extra subroutines and a greater
number of areas of failure. To reduce this, the total field of view is increased with
the two cameras. However, there are issues with placing too many cameras.
Placing more than two cameras on the system could cause significant problems.
After a certain point, it would negatively affect the weight of the system, possibly
making the drone harder to fly. Also, the overlapping sections of the camera’s
view may be more difficult to splice together, leaving more room for bugs and
errors to prevent successful operation. Moreover, more cameras means more
data to process. One of the desired outcomes is to make the system reasonably
fast once given instructions. The unit's computer has a limited amount of
processing power to dedicate to this task, so it must be conserved in other areas
where possible.
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5.6 Decision Matrices

There are many factors that may influence what the group is able to do for
the final system. The following charts are one of the ways that the group chose to
help narrow down what to do in situations where the path toward a goal was not
entirely clear. These decision matrices were created as a way to help the group
make choices on key aspects of the system: what programming language to
code in, what the obstacle avoidance system should be like, etc.. These charts
proved to be an essential tool, especially early on in the development process
where they were quite uncertain on how to tackle the more fundamental aspects
of the final system.

In order to help focus their time and effort, the group created several
decision matrices to help them decide on certain key aspects of the drone
system. For each decision, they determined several aspects that are the most
important to them including but not limited to: how difficult the option is, how
familiar the team is with the given option, their excitement to do the option, and
the cost of the option. Each of these specific characteristics were given an
integer score between 1 (the worst) and 5 (the best). So, in the end, the option
with the highest score would be the preferred one. It should be noted that even
though an option may “win” in the chart by having the highest score that does not
necessarily mean it is the chosen path. Several factors could come up in the
design and construction process that the team did not foresee, causing them to
change course on an idea.

Table 5.6.1: Programming Language Selection

Primary Programming Language Selection

1 = worst Familiarity | Motivation /
Difficulty with Score Comments
5 = best Language Excitement

The machine learning software
Python 4 5 5 14 |primarily being used is 'PyTorch,'
which is based in python

Somewhat familiar, and has more
C++ 2 3 3 8 compatibility/similarity with many
circuit boards

The team is not very familiar with
Java 1 2 2 5 this software, but wanted to keep
their options open
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The first chart, Table 5.6.1, weighs the different options for a primary
programming language that the team could choose. The primary options were
between Python, C++, and Java. After considerations, the team decided that they
should primarily code in Python. This is the software they all feel the most
comfortable using. Also, they are confident that any gaps in their knowledge
could be easily filled by the wide variety of online tutorials and code repositories.
Furthermore, Python is also a language that is often used quite often in the field
of machine learning.

Python will also work with our determined flight controller, Pihawk. This is
the flight controller that is being used by at home drone builders to implement
machine learning algorithms. This method is integrated by a raspberryPi. These
three components again, are widely being used for at home drone building which
ensures that there is sufficient data for us to be able to perform our project
efficiently and effectively.

Python is also a widely used and user friendly coding language. The four
of us on the team do have experience with coding with python. Python is also
used within our classes and industry. This gives us the opportunity to learn more
about coding with this software and using this knowledge that we are gaining for
after graduation. This knowledge is used for innovations within the areas of study
we each decide to work in.

The wide usage also ensures that there is enough studies, open source
codes, troubleshooting articles on the web in order to solve any issues we may
face. It also ensures that other faculty members at the university will easily be
able to provide feedback on how we can improve our machine learning
algorithms within the software. Below is a reference figure on how to properly
connect the pihawk flight controller with a raspberryPi for efficient usage with
python coding. This is important because it shows the pins that we are to use.

The next chart, Table 5.6.2, describes the different options for an object
detection and obstacle avoidance system. After comparing the options, it was still
unclear what to do. The team eventually decided that a simple object detection
system would be their core goal, and they would create an advanced goal to
have a series of distance detection sensors.

Finally, their stretch goal would be to add a full 360 degree LiDAR scanner
that would be able to create 1 2D map of the drone’s environment. This system
will also detect the designated safe landing zone for the drone. The landing zone
is a white paper with a large black X. The drone is to avoid the balloon obstacles
and then to land on this designated zone. Therefore, there must be two cameras
for the detection system, one for viewing its horizontal surroundings and one for
viewing the below surroundings to determine where the safe landing zone has
been placed
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Table 5.6.2: Drone Flight Object Detection System

96

Drone Flight Object Detection System

1 = Worst Familiarity |Motivation/
Cost |Difficulty |with Score |Comments
5 = Best Techno|ogy Excitement
Only detects how far
: the drone is from an
f;:g:e object in front of it. No
Distance 4 4 4 1 13 |mapping capability,
Dedion but would be cheap
and easy to
implement
More expensive, but
allows us to create a
%?e%ree comprehensive map
LIDAR 1 3 4 5 13 |of the area the drone
is  moving around.
Seanner Would lead to a
higher success rate.
Very cheap, and it
can be easily
Simple integrated into
Object 5 2 5 1 13 |multiple parts of the
Detection drone, but cannot
map the environment.
Limited overall
More difficult
mapping. Also
requires more Al
training to be able to
Camera "see" when objects
Image 3 3 4 2 12 |are getting larger and
Analysis therefore closer.

Would be harder to
code for and needs
more processing
power
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5.7 House of Quality Analysis

Below is the house of quality table that is used as needed for this project:
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Analyzing the above diagram, there has been a general baseline of
requirements established for the sensor system. Due to the complexity of the
design of the drone, an easy installation and minimized time to install is
necessary. These benefits may come with an increased cost as defined by the
table, but having some funding provided by the sponsor, cost isn’'t as important
as long as it's within reasonable range. Also, with increased cost also comes an
optimized video quality and accuracy of detecting other objects.

In terms of the dimensions of the system, that would be the least important
aspect. It has minimal impact on the other requirements other than potentially a
bigger system providing better functionality. Finally, the FOV is also very
important as it can increase the width of the detection zone, which may in turn
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make it easier to detect objects. A wider range shall result in a higher accuracy
for the drone to more effectively make decisions.

Overall, it can be concluded that the primary requirement that needs to be
satisfied is accuracy, since without proper object detection, the drone will not be
able to successfully complete the test. Therefore, according to the above
diagram, the following aspects shall be met in an order of significance when
choosing the best sensing system as described in Table 8.1.

Table 5.7.1: Describes the different engineering requirements of the system and
their relative importance

Primary Field of View - Wider range will produce better
distinguishment

Secondary Cost - Lower cost will provide more flexibility for other
components
Tertiary Install Time - More complex systems shall require longer

installation time

Least Important | Dimensions - More complex systems does not necessarily
mean larger dimensions

5.8 Breadboard Testing

The team needed to test some of the components on a breadboard as a
proof of concept. This section contains an image of the object detection system
made for the Senior Design discussion’s midterm demonstration. This system is
able to detect whether an object is within a range of about 30 cm, and it can send
a signal to a hypothetical microcontroller to act as a warning system to stop the
drone from flying in a specific direction.

It contains a potentiometer which is able to fine tune the exact distance an
object must be away to be detected. An improved version of this system was
created by the photonics engineer for their final demo in Senior Design 1. They
still believed that there were some final improvements to a distance detection
system. In fact, a more mature system was demonstrated in the final
demonstration. A more advanced system would likely be printed onto a PCB for
the final system. This would miniaturize it, making it easier to implement into the
final product.
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Figure 5.8.1: A breadboard model of an object detection system consisting of a
940 nm LED (top), an LM358 op amp, and a NIR photodiode (bottom)

5.9 PCB Planning

One of the requirements for the senior design project is for the team to
create a custom printed circuit board (PCB). This design should be original and
unique, and it must make significant contributions to the functionality of the
device. This section describes the basic requirements of the PCB, and how the
group will approach them in addition to making a decision on what part of the
drone’s system is put onto such a component.

The PCB has a microcontroller unit chip on board. For data intensive jobs.
For some tasks that require heavy analysis and computation, the professors of
the class recommend that two different microcontroller units are used. The first is
used for the primary tasks, like power controlling and basic movements. The
second processing unit would then be used solely for the more computationally
heavy elements, like analyzing a point cloud. This type of system prevents
resources from being diverted away from other core tasks, like power control and
movement instructions.In the case of this project, these errors could look like a
delay in processing time, or lag. When it comes to an obstacle avoidance
system, a delay could mean the difference between colliding with an object and
crashing,

According to the senior design requirements, the PCB must be integrated,
meaning that all of the components (like the sensors or output controls) that the
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microcontroller controls must use power from the same supply. Also, the input
and outputs of the controller should be clearly defined, partially to make it easier
to explain the PCBs purpose to judges in the final demonstration.

The professors defined that part of a significant PCB design in the context
of this class is to have an ‘amateur approach.’ This means that the group will not
be creating the PCB entirely from scratch. They are using existing software
available online and hardware available from the major PCB manufacturers to
create their design. Anything done from scratch requires prior approval from the
professors before it is made. Given the group's rather limited experience with
PCBs, and through the professors’ recommendations they decided that trying to
make any of these parts from scratch would be far too complex and not worth the
effort.

The group has made many considerations as to which aspect of the
system would be good for the PCB. There were talks of making the image
processing and drone control onto a PCB, but due to the very heavy
computational requirements, the group explored other options such as buying a
graphics processing unit. While it is still an option for next semester, the group
agrees that further deliberation is required before the final assessment on the
matter is made.

The other component that could be put onto a PCB is the optical detection
system. As it stands now, the team appears to be on track to being able to create
the full 360 degree LIDAR scanner. This would require a significant amount of
power control across the multiple components. A battery power source must be
split into the laser diode, the detection system, the rotation mechanism among,
etc.. This requires a fair amount of computation, and combined with the other
software computation needed to construct a point cloud of the gathered data,
some type of processing unit is required for this system to function.

Furthermore, a PCB would be able to have connections that could connect
more directly with the RaspberryPi than something like an Arduino. Making a
PCB for these components could also enable the group to use solid state
electronics, which have the potential for much higher driving frequencies, an
essential component of the rangefinding system. One of the comments made to
the group during both the midterm and final senior design demonstrations was
that the circuits would likely perform much better with solid state electronics on a
PCB. Furthermore, the system has very straightforward goals, with clearly
defined input and output requirements. Not only does this help them more easily
explain the significance of the PCB to the judges during the final presentation,
but it also simplifies the circuit itself. Too many inputs and outputs or moving
parts could make the design messy and complicated very quickly. The group
wants to avoid this confusion wherever possible. None of the group members
have had experience designing or constructing a PCB design prior to this class.
With all of this in mind, the group is confident that the LIDAR object detection
system would be the perfect candidate for a PCB assembly.
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The group had the choice of ordering a PCB from multiple companies.
Most of these companies offer the service of assembling the PCB with the
components specified for an extra charge. The group talked over the benefits
and downsides of each. Pre-assembly would free up more time for the group to
divert toward other tasks; however, the group also wished to minimize the overall
costs. After all, especially with the object detection system, one of the primary
goals is to create something that has a competitive price when compared to all of
its commercially available alternatives.

Soldering the components to the PCBs themselves would save the group
money; however, soldering PCB components can prove to be quite a challenging
and tedious task. The parts that make up a PCB are far smaller than what are
found in most DIY circuits, and it requires a high level of precision and skill. Not
only that, but more fine soldering tips are needed to effectively put the parts onto
the board.

With both methods of PCB assembly in mind, the group came to a
decision. They have a member of the team that is quite proficient with soldering
components. This member has had a lot of experience soldering different
electronic components together, and after researching different methods on how
to do so with PCB components, they are confident they have the ability to
assemble it themselves.

While there are some aspects related to this that are subject to change in
the next semester depending on time constraints for the final drone construction,
the group is confident that they possess the capabilities to assemble the PCB
themselves rather than pay a premium to have the manufacturer do it instead.
Not only that, but they are confident with their tentative decision to use the optical
detection subsystem as the chosen electronic component to base their PCB
assembly off of.
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Figure 5.8.3: Final PCB Circuit
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The final PCB design, as shown above in Figure 5.8.2, consists of three
main sections: proximity sensing circuits, the modulator, and time of flight
detection. The left side of the board contains several amplifier circuits that will
receive the signals from the four proximity sensors. Whenever they detect a
nearby object, a high signal is sent to the processor. Next, on the bottom of the
drone, there is a Colpitts oscillator circuit. This uses a 48 MHz crystal oscillator to
generate a continual oscillation signal that is sent both to the 980 nm infrared
laser and the time of flight circuit. Finally, the right side of the board holds the
time of flight circuit, where the received and sent signal can be directly
compared. In this project, it is an RP 2040 Microcontroller unit that is on a
Raspberry Pi Pico. This is the main unit that interprets all of the input signals and
gives instructions for the behavior of other components like the servos and LED
signals It also provides the output signal for the object detection system on the
drone. Additionally, there are three separate mounting holes for the board to
screw into the LIDAR assembly. The final PCB will be put within the final
assembly since its primary functions involve controlling the different aspects.

Table 5.9.1: A basic comparison between different PCB manufacturers

Manufacturer Price Consumer Comments
Perception
(according to
Google Reviews)

PCBWay Low High May have longer
lead times and
higher shipping
rates. Centered in
China

Camptech Average Great Somewhat
delayed shipping.
Based in Canada

Sunstone Circuits | Moderate Average Centered in US,
shorter lead times
and lower
shipping costs
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5.10 Reference Design Material

The following section describes the basics of how the drone and its
components shall be built, as well as visual representations of the functionality of
the device once completed. These components include the propellers, the UAV
system, and the PiHawk and PiCam systems. Each component is very important
for object detection and the below references will help get an understanding of
how they coexist with each other to create an efficient detection system.

5.10.1 UAV System Components

The UAV system is crucial to enabling autopilot in which software will
control the flight of the drone, rather than an independent remote control. This
system is comprised of the following procedure:

- Bottom Mounting Board
- Autopilot Feature

- Motors

- Top Mounting Board

- Propellers

This system is built in a layered method to ensure proper security when
installed on the drone. The process of constructing this is simple, but there are
some precautions to take, such as ensuring the propellers are all aligned in the
same orientation to prevent misdirection during flight.

Step 1 Step 2 Step 3 Step 4 Step 5
Ilnstall bottom board |—b lInslaIl autopilot system |—P‘ Tnstall motors, ESCs | === |Install top board | === install propellers

Please wire neatly. Make sure wires will not Please install propellers after autopilot system
be cut by frame boards and propellers. configuration procedure. Make sure the rotation
Smooth out the boards edge if necessary direction of propellers are the same as the figure shows

Install screws by appropriate force to
prevent breaking threads. Use adequate
screw glue for installing screws. ’

Figure 5.10.1: Step by Step diagram showing the basic steps of how to
assemble a UAV.
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The above figure is from the drone building kit that the team is looking at
purchasing. It is important to our team because it shows how the drone’s main
frame will look and the steps in building the drone. All team members are novice
in building robots and building the drone will take a great deal of care with
precision, and wiring. All electrical components of the drone must be calibrated
prior to turning on the drone. Electrical components that do not have calibration
can result in an electrical fire, which is to be avoided for safety measures and the
component reliability.

It is impeccable that we do our best and uphold the highest safety
measures when building the drone, since time and resources are now limited.
Burning an electrical component can and replacing and severely impact our
deadline with current wait times on parts delivery. For this reason, the team is
looking to purchase a drone kit with instructional videos and spare parts in order
to ensure that we are able to meet the senior design project deadlines within the
spring semester.

Below provides images of components that are within the drone kit our
team will purchase over the winter break. Solid work drawings of the drone frame
were attempted by Jazmine but found to be incomplete by project submission
due to novice use and continuous crashing of the university provided software. It
is imperative to note that our drone is a standard quadcopter drone and the
innovation and focal of this project is the vision navigation and machine learning
components of the drone. Not the actual drone design itself.

5.10.2 PiHawk and PiCam Components

The PiHawk Flight Controller is crucial for sending data to the camera,
which is connected to the Raspberry Pi motherboard. This allows adjustments to
the field of view, the frame angle, and also liftoff thresholds. This camera
provides high efficiency and is currently known as the best flight controller to be
implemented for a civilian used vision navigation drone.

The PiHawk will allow user interfacing in which the region of interest can
be chosen via the camera mapping provided by the PiCam. As described by the
figure below, there are in fact multiple different function calls which are used to
set values for altitude, takeoff markers, radian to degree conversion and vice
versa, as well as simple device connection.
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RPI3 Model B

Telem2

ol B VL2
i 28

USB ports for
keyboard, mouse

LAN cable

Micro USB HDMI
for power for display

The above figure describes how to connect the RaspberryPi to the Pihawk
controller which is essential in ensuring that the PiCamera module will integrate
properly with the controller of the system. This figure is essential as a reference
for the team and for the judges to be able to provide feedback on our

specifications.

Pixhawk Flight Drone Field of View
Controller >
Target
d, %
Body Frame /
Camera Frame
center
Flight Controller and Object Region Object Region Andl
Embedded Module =3 of Interest > of Interest > "Igf
Interfacing Selection Selection calculation
+ Connect_to_vehicle \ 4
« Get_target_offset_meters
« set_home_position Char.]?e tl:e < x_rad,y_rad,d_m,
. takeoff_13m e [* dist_m
_— Estimate location =
« take_position_angle
« calculate_x_rad_y_rad

Figure 5.10.2: Diagram showing the Pihawk flight controller and Picam module
positioning and drone field view. Our design will include two cameras for

complete view
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Figure 5.10.3 describes the procedure for mounting the PiModule camera
onto the Raspberry Pi motherboard. While there are some optional components,
only the primary parts such as the circuit board, dust cap, and adjustment rings
are generally needed for this type of project. The dust cap is significantly
important to prevent any blurred camera results, as well as proper layering since
any error can cause the camera to not perform as expected.

Dust cap

Optional C-CS adapter j ;-.. ;

Back focus adjustment ring @
Back focus lock screw

Optional tripod mount j r /

Main housing and sensor
Ribbon cable to Raspberry Pi \

Main circuit board

Mounting holes

Figure 5.10.3 Mounting the Pimodule camera onto Raspberry Pi 4B

5.10.4 Reference Frames

Reference frames are also important in order to develop an accurate 3D
environment for object detection. The ability of the drone to orient itself and other
objects within a given environment is an essential skill that the system has in
order to function properly. Figure 5.10.4 shows these references in perspective to
the x, y, and z planes.
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Figure 5.10.4 The flat outputs and the reference frames needed to take in
consideration for the software and the drone in a 3D environment.

5.10.5 Camera Perception References

The camera of the drone has the capabilities to detect geometric objects,
such as 90-degree angles, to determine a doorway, a window, or even a square
object. With some fine tuning to the software, this feature becomes a very
efficient method overall.

By detecting openings and obstacles using this perception technology, the
drone can develop a motion primitive, in which it will project a path given the
objects detected in order to prevent crashing into walls or obstacles or potentially
flying in an unwanted direction.

Perception
Features

Motion Primitive
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Figure 5.10.5 A representation of a drone in motion in an indoor environment and
detecting objects in its view.

5.10.6 Navigation References

Beyond the camera features, there are three other features that are crucial
to building a successful drone that has visual navigation abilities. These include
awareness, basic navigation, and expanded navigation.

With awareness, the drone needs to have a reference to the edges of the testing
environment, as without any insight on that, crashes are much more likely to
occur. Adding to the simple object detection for the shapes hung from the top of
the mesh cage for testing, the drone shall be able to detect the walls using the
same mechanisms.

Basic and expanded navigation are simple to integrate, and for this type of
project, drastic altitude changes aren’t necessary. For expanded navigation such
as “flips”, that kind of movement would be rather detrimental for the drone
especially in terms of detecting objects.

Level 4 Autonomous
Drone Navigation

Features
v v v
Awareness Basic Navigation Expanded Navigation
| »( Spatial Evaluation | [»| Autonomous L » Path Generation
Movement
Accounting Capable of some Generales or
for the spatial level of navigation optimises safe
limitations of its without a human routes through
environment ie operator obstacles or
walls or ceilings environments
L »| Obstacle Detection | |—»| Colision Aveidance R
Distinction
Determining Actively monitoring Utilizing strategies
independant for and preventing for sensing/
obstacles as potential collisions navigation in

obstacles to be

uncommon

other objects or from
environment

executing safe
landings and take-off
automatically.

avoided environments
: . Auto Take-off / Non-Planar
—>| Obiect Distinction — Landing Movement
Identifying objects Determining safe Considers 3-
as separate from Landing Zones and Dimensiona

movement strategies
in the navigational
policy

Figure 5.10.6 A flow chart showing the three main features the team is trying to

accomplish with our drone.
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5.10.7 Drone Tilting Phenomenon

In all types of flight, there are many natural occurrences that can easily
cause the vehicle to tilt in multiple directions. Steady wind speeds, random wind
gusts, or any number of other forms of environmental turbulence can influence
the state of the drone’s flight at all times. The infographic describes how the
blade direction can affect speed and altitude based on the tilt angle at any given
time. If the blade of the propeller is traveling in a climbing direction, such as
where the blades are exerting upward force, the drone shall increase in altitude
within the same direction as the tilt. The same theory also applies to the
retracting blade direction. Understanding these concepts is crucial to fine tuning
software to offset any unwanted tilt, as well as to correctly fly in the case where
tilt is needed to reach a given object.

Climbing blade
Climb speed Advancing blade W < O
Xp B9 from positive —_\
to negative % '
€ - ————- - )
\4—-—* Climb SPEEd
‘ goes from negative
u Retreating blade to positive
< ¥ :
Falling blade
Falling blade
w>0

Climb speed Retreating blade
goes from positive

Xb to negative -r—\

€-------- < >
% Climb speed
goes from negative

Ad ing blad to positive
U yh vancing blade p

@ Climbing blade

Figure 5.10.7: The tilt phenomenon needed to understand in order to build and fly
the drone correctly
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5.10.8 Control Principles and Loops

Hovering Control Loop

Atlitude
estimation

Horizontal
velocities
estimation

Vertical speed Altitude
Estimation Estimation

Figure 5.9.8: The architecture of the control principle for the three main controls
we are aiming to achieve, hovering control, altitude control and angular rate
control.

Understanding how the types of controls work is important when
controlling the drone in different environments. Fully understanding these
controls is essential to the steady flight of the drone. There are three main
classifications of controls and loops they pertain to:

Hovering control loop: this requires altitude and speed estimations while also
being able to correct any issues that may occur while hovering over a single
position without any horizontal movement. This is also where the camera has a
responsibility in determining the height of the drone at any given time in order to
help with troubleshooting mid-flight.

Altitude control loop: This segment is crucial to avoiding obstacles in the
positive and negative y-plane. By maintaining a desired altitude, objects that are
above and below the drone can be ignored. The loop requires accelerometers
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which is important in maintaining height given the natural force of gravity acting
upon the drone.

Angular rate loop: This utilizes gyrometers to help maintain a stable flight
angle, which also refers to the tilting phenomenon, by determining the angular
rate at any given time and position.

5.10.9 Image Extraction and Feature Detection Reference

The camera installed on the drone will provide regional estimates for
detected objects in order to determine distance, height, and width, given the
PiCam’s 3D scanning capabilities. These capabilities must be accurately
assessed . Both Figure 5.10.9 and Figure 5.10.10 provide the logical description
of a hypothetical image recognition software that the system would use to identify
objects. These logical structures are necessary to successfully navigate the
environment.

- Real ume
Camera E"'t”“,ate Feature select imjage
attitude location AR
. — classification
Esllmalg the region ' ‘ Image
of image I Assessment

Acquire the Feature extraction and

specific region of description
L Image
* GIS feature
feature 1 i
‘ GISmodel - | ——g - Featue scloction and
registration

he result of
egistration

The image location

Fesult of
vision-based
location

Figure 5.10.9: An example of a profile of a vision-aided navigation system with a
geographic information system (GIS)
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Survey on computer vision: images and videos captured by drones ‘
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Figure 5.10.10: An example of an overview of a survey structure for vision
navigation

Overall, the team has decided that one of the most important aspects of
this project as a whole is the planning that goes into the image detection
algorithm. Given that this software is one of the fundamental building blocks of
the entire system, it seems to be an apt label. As with most computer programs,
having the skills required to properly plan out and visualize the logic and flow of
the code is just as important as being able to write the code itself. With the image
detection algorithm and potential for subsequent navigation instructions this is
especially true.

The algorithm needs to follow a clear structure, or else the subsequent
code is just as tangled and messy. If one puts garbage into it, garbage will come
out. With this report, the team has finalized a structure to the code, paving the
way for them to write and construct the software in a rigorous, structured, and
logical manner. This will put them ahead in the second semester since less time
is spent worrying about the flow, and more time fixing minor bugs. The team
believes that with this structure, major flaws and logical missteps can be avoided,
which may prevent countless hours of time across the whole group.

The programmers and hardware focused members of the team all agree
on how the drone will think, and they will strive to work in tandem to develop and
transform these logical flowcharts into a real, working system. This agreement
and stewardship towards each other will ensure a successful senior design
completion.
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6 Administration

6.1 Project Milestones and Deadlines

Throughout the course of Senior Design, which takes place between
August of 2022 and is expected to finish in May of 2023, there shall be core
milestones established within the section that are crucial to the success of this
project. There are eight key deadlines that are to be met by the group.

The first stage of deadlines is between September and December of
2022. This is the stage where the documentation for the project must be
completed and submitted. The primary goal of this stage is to complete a
descriptive, 120-page paper that shows all the key components and methodology
of the project, which is all described in the above sections.

The second stage of deadlines is between January and May of 2023.
This is the testing and development stage of the project where all the
components of the drone are to be ordered and assembled to create a finished
product. Additionally, the testing environment shall be built within the stage so
that thorough testing can be conducted.

There is a period in between the first and second stages that will primarily
be used for more planning as well as part ordering and shipping. During this time,
the team plans to go over this document and make any necessary changes
should any revisions come up. This could be due to the failed delivery of a
component, an out-of-stock component, or even an outright modification to the
use of a component.

Listed below are the eight stages of deadlines which must be met by the
end of each month in order to remain efficient:

September 2022 - At the beginning of the semester, the group must
become familiar with methods of training a drone and come to a conclusion as to
which tactics would be optimal for completing the project goal. The group must
decide on specific aspects of the project to build on: which constraints,
specifications, software, and machine learning algorithms to be used. They must
use this information to complete the initial project documentation.

October 2022 - By the middle of the first semester in October, the sensing
and imaging systems should be in the prototype stage, enough for the mid
semester demonstration of its optical components. This is a required task for the
photonic science and engineering student in the group. An in-person
demonstration must be done to show the work they have done so far in the
semester. At this time, the team should also have purchased a drone kit to study
and use to adapt their own drone design. Initial designs of the drone should soon
be completed.



Group Three: Object Detection Drone 115

November 2022 - Another in-person demo is required of the photonic
science and engineering student in the group. This in-person demo will contain a
more mature prototype of the systems demonstrated previously, and possibly
another new system if one is created or ready to present. At this stage, the
finalization of the parts list should be nearing completion. A proposal to the
sponsor should be crafted to explain the necessary parts and final total cost.
Also, the team should begin constructing the safety cage that the drone is tested
in. This cage is located inside of a lab that the sponsor has provided them.

December 2022 - After the first semester is complete, the optical system
should be prototyped and be functional enough to formally begin the training of
the Al. The package for the convolutional neural network must be selected. Once
selected, the CNN can be altered to fit our project better. The image recognition
training can then be worked on. Also, all of the parts necessary for the drone to
fly should be identified, and a proposal should have already been submitted to
the sponsor to ensure delivery of most of the parts before the next semester.

Supply chain disruptions have been quite common in recent years, so the
team should plan accordingly. They must act as if all of their parts may be
delayed for a long time, so parts should be chosen well before they are needed.
The group must begin assembling the drone no later than January 2023. There
must be ample time to receive the parts and construct the drone to ensure there
is plenty of time for the Al to be trained and integrated.

January 2023 - The final designs of the drone are reviewed and drone
assembly should begin immediately with the parts that should have already
arrived. As the hardware is being constructed, steps should be taken in order to
ensure that all of the constituent parts of the drone can integrate together
properly. Some group members have expressed concern due to experiences with
past projects. Often, while individual pieces of the system may work well
individually, when they are all brought together into the same system for the first
time, they will likely not work. The group believes that consistent and clear
communication among all of the team members when they are creating their
individual parts is an essential part of ensuring significant integration issues do
not arise.

The beginning of the on-board Al should also begin development using
the imaging systems that had been prototyped in the previous semester. Once
the drone is built, the simulation software can be set up and work alongside the
CNN to train with live camera feed, rather than with a dataset of images as done
previously. Any last minute plans should be drawn up now. After this point, the
group may not be able to afford the time for any more additions to be made to the
final drone’s hardware plans, and the Al won’t have time to train if there are more
iterations that need to be done.

The PCB design should also be finalized around this time. The group
needs ample time for the order to be constructed (and possibly assembled) by
their PCB manufacturer of choice. Due to this component’s importance in terms
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of the final evaluation, it is absolutely essential that they get it working as soon as
possible.

March 2023 - By the middle of the second semester, the drone should be
assembled fully. Most, if not all of the hardware components should have been
tested and quality checked. Importantly, the PCB that has been created should
have arrived and be fully integrated into the hardware of the system. This is a key
feature since the PCB is a required component of the final design in order to
pass the class. At this point, the drone should be fully capable of hovering and
maneuvering on its own without any external supports (i.e. ropes and/or
supports). Given that autonomous flight is one of the core goals of the project, it
should have reached this stage of operation. The autonomous flight cannot be
tested if the drone cannot hover and do basic movements without assistance.

The neural network should have been well underway with its training as
well, and steps should be taken to ensure everything can be integrated together.
Drone should be able to identify objects within the view of the camera and
classify them accordingly. If a LIDAR scanner has been created, then it should be
fully constructed and integrated with the drone’s commands.

May 2023 - By the end of the second semester, the onboard artificial
intelligence should be fully trained using provided machine learning algorithms,
and it should be fully integrated onto the drone. The drone should be able to
easily recognize its predetermined objects, and take a string of commands and
translate it into instructions that the drone can then form a route and execute on
it. A full demonstration should be ready for the senior design competition.

First Progress Update (December 2022):

As of the date of submission (December 5, 2022), the group has made
satisfactory progress toward each of the goals outlined in the previous sections
of the milestones. The midterm demo allowed them to present a simple object
detection system. This could detect whether an object has come too close to the
drone system. It would send a signal to the completed system, and there would
be an override of the controls, forcing the drone to stop. This system would
satisfy their core optical goals.

In the fall semester, a second demonstration was done of the now updated
optical components. This device was able to detect the exact distance away an
object is as opposed to the presence of the object. This will give them more
accurate location data. Furthermore, if it was sufficiently miniaturized, it could
also be used to make the full 360 degree LIiDAR scanner. They have also
decided that this component is the one that will fulfil the PCB design
requirements. So, the group is maintaining a rather optimistic attitude about the
potential of the final optical system.
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Furthermore, the group has finalized their plans for the drone construction
and begun to order the necessary parts for the final system. After writing the
report, the team has finalized their part selection for the drone with high
confidence. The group has no reason to believe that construction of the drone
will not be proceeding as scheduled above. The software development process
has also been laid out completely, and in a manner that the group is satisfied
with. The programmers of the team believe that they are able to create the image
detection algorithm on schedule.

The software integration will follow the construction of the drone once a
full flight test is completed. For this type of planning, a Gantt Chart may be used
to determine which parts of the software need to be completed, as well as a
dedicated timeline for each component of the software. By completing this gantt
chart, the software team has a sufficient method of establishing a timeline for
completing the learning algorithm for the drone as well as allowing enough time
for testing the software.

Final Progress Update (April 25, 2023)

The group demonstrated their drone in front of their faculty review
committee and was given approval for a successful project. While the team was
not able to complete the autonomous drone navigation, they were satisfied with
the overall project. The object detection algorithm worked exceedingly well.
Additionally, the group was able to lower the processing time for object detection
by integrating the LIDAR scanner with the system. By only running the image
recognition software whenever the scanner detected an object near the drone,
the drone would not waste any time or processing power detecting objects that
were obviously not there in the first place. Furthermore, the drone was able to
achieve steady flight, and though there was some complications flying the drone
with the LIiDAR scanner due to weight balance issues, it still functioned well on its
own.

Perhaps in future works, advanced capabilities such as autonomous
navigation, an extended ranging and mapping system, or a processor with
integrated graphics installed to speed up detection time could be added.
Although, for the time, budget, and skill restraints of this project, the group
consider themselves successful.

6.2 Budget and Financing

After looking through several different kits for inspiration on how to build
their own autonomous drone, the team identified some basic components that
they would need in order to build the final system. These include but are only
limited to: a lightweight frame, four brushless motors, four propellers, an electric
speed controller, a power distribution board, a flight controller, and a
rechargeable lithium ion battery of sufficient capacity. There will also need to be
several other pieces of equipment that are used for the drone’s sensing and
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computing abilities. These other pieces include a camera (for object
identification), some type of video transmitter (to send the video data back to a
computer on the ground), and an on-board processing unit that can collect data
from all the devices, and be able to store that data as well as the Al's navigation
program.

The team estimated the cost of their own drone to be similar to that of a
mid range consumer drone kit, which can be several hundred dollars. If the group
were to reach its stretch goal of having a 360 degree LiDAR scanner, they want
to have such components be cheaper than whatever may be commercially
available.

The team has also analyzed lower budget mapping LIDAR scanners,
which cost $100 or more. So, the components to such a scanner should be
significantly cheaper. This is one of the primary goals of optical design. Creating
a product that is cheaper than any reasonable commercial alternative is the
primary way to justify creating these parts as opposed to simply buying several
units off of a consumer website.

With all of this in mind and with consultation from the sponsor, the team
came up with a total estimated budget of less than $1400. The team’s generous
sponsor, the UCF ECE department, has confirmed that they will completely
finance any of the group’s hardware needs within reason, They have defined a
specific process to acquire any funding they may need. According to the
sponsor’s terms, in order to get funding for specific parts, the group must first
submit a proposal to the sponsor.

This should include the price of the part, the date that the part is needed
by, and most importantly, detailed reasoning and justifications as to why the team
needs the part specified. The sponsor will then review the proposal and promptly
respond to the team with whether or not they will choose to allow or deny funding
for the part.

The team has decided that no further research into additional
sponsorships is needed. They are receiving plenty of funding to complete the
project. Given the estimated cost of all the components needed to build a
complete drone, this budget is more than reasonable and the funding provided is
more than sufficient. If any of the total cost goes over the proposed budget from
the sponsor, then the team shall pay the remainder out-of-pocket.

The below table describes each component as well as the required cost
for each. Based on the above budget for the project as determined by the
sponsor, the total estimated cost for the project as a whole, not including extra
parts to be added if necessary in the late development stages, comes out to
approximately $1350 USD.

This number may be deemed higher than initially expected, but the group
expects the total cost to be much lower as the price estimates are just overall
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averages. Through the generous financial support provided by the ECE
department, these costs is alleviated After considering the components explicitly
described in Table 6.2.1 on the following page and considerations of any other
miscellaneous components they may have to purchase, the team is rather
satisfied with their ability to stay within any budgetary restrictions given to them.
Please note that the below table lists market prices, and that the costs are
subject to change at any given time.

Table 6.2.1: A breakdown of major parts and current market prices.

Item Part Cost
6.2.1 | Drone Frame $20
6.2.2 | Four Brushless Motors $15 each
6.2.3 | Eight Propellers (four for backup) $8 each set
6.2.4 | Propeller protector rings $11

6.2.5 | Four Electric Speed Controller 41

6.2.6 | Power Distribution Board $40
6.2.7 | Flight Controller - Pihawk $195
6.2.8 | Battery $16
6.2.9 | Battery Charger $15
6.2.10 | Battery Fire-proof case $15
6.2.11 | SD card and SD Reader $15
6.2.12 | Pi module Camera (2) $180
6.2.13 | RC Video transmitter $25
6.2.14 | Sensors (height and lidar sensors) $500
6.2.15 | Raspberry Pi 4B $225
6.2.16 | Vibration Dampening Plate $15
6.2.17 | GPS and Compass Module $23
6.2.18 | Infrared Laser $20
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6.3 Conclusion

After full completion of this document, the group came to a consensus that
all the work shown in this document has been of their own original work, and that
all uses of outside sources have been referenced in the below section. Also, the
team went through for white space and line spacing errors, as well as correcting
any grammatical and numbering eros that may have risen during the final stretch.
This document shows the full stages of development and while some necessary
modifications may arise while the development stage commences, all crucial
information has been covered.

There was an initial document that was submitted as a rough draft back in
September2022. The constraints of this project have changed significantly since
then, and this space is an area to acknowledge this. The original document has a
different purpose,

Unfortunately, after the group’s original sponsor retired from UCF, the
group had to re-evaluate their project. Initially, the drone was meant to be able to
interpret oral commands from a person standing away from the drone. This
resulted in the largest change in the final product. The initial plan was to create a
drone capable of visual language navigation, where a microphone would be
added to the drone and it would navigate using the user’s specific commands,
rather than software based solely on the visual navigation capabilities of the
drone. Regardless, with the original sponsor leaving, who had insight on this kind
of navigation and machine learning, it was subsequently deemed to be too
difficult for the group to complete especially since a functionality revision was
made in the middle of the semester. This lack of guidance forced the group to
abandon one of the oral interpretations using a machine learning goal.
Thankfully, the UCF ECE department stepped in to act as a source of funding.
This has alleviated the group’s fears of not being able to afford the final project,
which was a great amount of pressure on the team in terms of financials for a
short time. Regardless, they are extremely grateful for the ECE department for
helping them out in such an uncertain time.

The plans for the construction of the visual navigation drone show
incredible promise. Following extensive research, the group has discovered
several methods of developing an artificial intelligence with the capabilities to
recognize specific objects in an area. They have also developed plans for
ensuring the safety of the drone and

The group also sees a great potential if it were to be used in a more
commercial setting, where the scope, scale, and budget would be far greater.
With significantly more time and processing power available to the team, the
image recognition Al could be trained to recognize more objects, with a greater
efficiency. In such a setting, the drone could recognize more everyday objects
rather than specific targets. It would be able to recognize trees, buildings, or even
people. This could be combined with more mature instructions, where the drone
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can fly by also changing its height, and not just flying in a rigid two dimensional
plane.

Eventually, this drone could be integrated with voice commands, and the
drone would be able to carry out specific tasks spoken to it by a human. Such a
mechanism would allow for the drone to become fully autonomous, and it could
navigate through an environment with minimal human effort.

Also, with higher quality parts, the object detection system could be made
to be far more mature. With the budget for a commercial application, the LiDAR
system could become able to create a three dimensional map of the
environment. This would require much more expensive parts, and circuit
components of a higher quality. The scanning system would have to rotate in
three dimensions, and there would have to be enough processing power to
accommodate this exponential increase in data. If the technology would be able
to mature to this stage, it could be combined with the image acquisition
algorithm. The system would then be able to tell exactly where an object is in its
environment, its distance to it. From here, it could make calculations for the
expected flight time, analyzing possible flight patterns and speeds to know
exactly when it will arrive at the target. This fully matured three dimensional map
could be used for very precise flight paths to specific objects, avoiding all objects
and people efficiently. A more efficient flight path can have shorter completion
times, and more satisfied customers for a potential business.

Unfortunately, the group would not be able to achieve such goals with the
limitations facing them in a senior design project. Muscles are not grown stronger
without strain, and knowledge cannot be grown without thought provoking
questions. In the end, the group is satisfied with the current plans for the drone,
and they see a great amount of potential in the applications of the technology if it
were to be extrapolated into an industrial setting. They are and will remain fully
committed to developing the best technology with the resources and time
available to them.

In terms of the goals and timelines that were established at the beginning
of the semester, the group has strictly followed these deadlines to get each
specified section of this document done for rough draft submission. One major
setback in terms of reaching the page limit for this final document was line
spacing due to a software issue within Google Docs. But, with quick remediation,
the document was reorganized and revised to fit all the contents in a correct
manner. Beyond that restriction, all goals have been met as a prerequisite to the
construction of the drone, with the exception of ordering parts as needed.

In further discussion, the part selection section of this document fully
describes the comparison tables as well as the decision matrices that went into
picking the right component with two main attributes in mind: efficiency and
accuracy. The document describes how each specification of the component had
an effect on the success of the project as well as how the component cost
correlates to processing power, camera quality, and other key specs.
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As discussed in the previous section, the budget and financing aspect of
this project is almost entirely covered by the ECE department. But, since this is
an engineering project, all specifications and constraints must be explained as all
projects have a financial component to it. These explanations must be in depth
and reasonably justified by the group before further action is taken. The team
understands these requirements and are willing to work around any further
needed requirements set forth by the sponsor.

Overall, the team feels as though this project as a whole will help them
adjust to the thought processes and procedures present when creating a product
in real-life applications associated with engineering. They understand that they
are able to use every skill they learned about technology investigation, design,
and construction from this project in order to develop numerous other creative
solutions to unique problems in the future. This entire process required a great
deal of investigation and planning, and the physical and software development of
the final drone in the upcoming semester provides even more challenges that the
team welcomes enthusiastically. The group remains strongly optimistic and
confident heading into the next year. They will take all of the lessons they have
learned about the hardware, software, and teamwork and carry it with them
directly into the next semester and beyond as they reinforce their knowledge not
just in university, but into industry as well. They will carry these lessons with
them. For now, they will continue to put forth their best effort into this project. The
final product at the end of Spring 2023 is their autonomous visual navigation
drone, and they will make it the best it can be.
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